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Computing as a utility

® Purchase however much you need, whenever you need it
® Service ranges from access to raw (virtual) machines, to
higher level: distributed storage, web services

Implications

® Reduces barrier to entry to building large service
= No need for up-front capital investment
® No need to plan ahead

® Reduces cost
e Compute and storage becomes more centralized



“The Cloud': Data Centers

Facebook data center, North Carolina

National Petascale Computing Facility,
UIUC




Key advantage: economy of scale

One technician for each 15,000 servers [Facebook]
Facility / power infrastructure operated in bulk

Ability to custom-design equipment

o Facebook (servers), Google (servers & networking gear)

Statistical multiplexing

® Must provision for peak load
® Many users sharing a resource are unlikely to have their
peaks all at the same time



1961-64: Packet switching

Leonard Kleinrock: queueing-theoretic analysis
of packet switching in MIT Ph.D. thesis
(1961-63) demonstrated value of statistical
multiplexing

Concurrent work from Paul Baran (RAND),
Donald Davies (National Physical Labratories,

UK) Kleinrock
Circuit switching Packet switching:
multiplexed
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Challenges for Cloud Computing

Confidentiality of data and computation
Integration with existing systems
Robustness

Latency

Bandwidth

Programmability



Importance of low latency to the cloud
High bandwidth within the cloud
Programmable networks

Closing thoughts: Networking Research



Low Latency
to the Cloud



Low latency to the cloud

Cloud implies data and computation outsourced and
partially centralized

® i.e., physically more distant from users

Fundamental Challenge:

How do we make the net feel like it is right here
even when it is distant?

Aside: How much does
latency matter to humans!?



Milliseconds matter

Hiromi Uehara
“Kung FuWorld Champion”

88 msec per note



Milliseconds matter

> >
8«
[0
© O -

[N}
1SS
oo
oo
Al <+

-z l\ l\ _ m |m

SR

e =

I T [ [ [ [ [
%¢'0 %0 %3 0~ %1 0— %9'0— %80~ % L=

Jasn uad saydJeas

wk6

week 6

[Jake Brutlag, Google, 2009]

wk2 wk3 wk4 wk5

wk1

week |



Low latency to the cloud

Cloud implies data and computation outsourced and
partially centralized

® i.e., physically more distant from users

Fundamental Challenge:

How do we make the net feel like it is right here
even when it is distant?

Possible solutions:

® Bring the cloud closer: “micro-clouds”
® Reduce network latency: better protocols
- Lots of room for improvement!



High Bandwidth
Within the Cloud



Costs in a data center

Servers are expensive!

Amortized Cost | Component | Sub-Components
~45% Servers CPU, memory, storage systems
~25% Infrastructure | Power distribution and cooling
~15% Power draw Electrical utility costs
~15% Network Links, transit, equipment

[Greenberg, CCR Jan. 2009]



Use any server for any service at any time

® |ncrease utilization of servers
® Reduce costs, increase reliability

What we need:

e Rapid installation of service’s code
= Solution: virtual machines

® Access to data from anywhere
= Solution: distributed filesystems

e Ability to communicate between servers quickly,
regardless of where they are in the data center



Traditional data center network

Internet

Data Center

Layer 3

Internet
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LB S S LB
S S S S
AllA]l..lA AllA]...] A

| ]

A Single Lay'er 2 Domain

Key:

* BR = L3 Border Router
* AR = L3 Access Router
« § = L2 Switch

* LB = Load Balancer

« A = Rack of Servers

[Greenberg et al, CCR Jan.2009]
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Traditional data center network

Internet
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Need for high bandwidth increasing

Big data processing tasks becoming more common

® Web indexing, machine learning, storage replication, ...

Bandwidth Consumption

Ingress (from Internet)
Egress (to Internet)

Inter-cluster

Inter-cluster traffic more than
doubled in the last 7 months
(and is accelerating)

March, 2011 May, 2012

[Facebook]




VLZ2: A Scalable and Flexible
Data Center Network

[Greenberg, Hamilton, Jain, Kandula, Kim, Lahiri, Maltz,
Patel, Sengupta, SIGCOMM 2009]

Key features:

® Flat addressing
- Ethernet-style (layer 2) addresses to forward data,
rather than IP addresses
- Separates names from locations
e Randomized load balancing
- Makes better use of network resources
e High bandwidth network
- Folded Clos network
- Special case: fat tree



“Fat tree” network

Core

...............

) %Aggregation

Ry Edge

...................................

Figure from [Al Fares et al, SIGCOMM 2008]

Nonblocking: servers limited only by their
network card’s speed, regardless of
communication pattern between servers



“Fat tree” network
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Our work: Jellyfish

[Singla, Hong, Popa, Godfrey, NSDI’ | 2]

High throughput

Eliminate bottlenecks
“Agile” network

Incremental expandability

Easily add/replace
servers & switches

server footprint of Facebook

2007 08 09 |0



Structure constrains expansion

Coarse design points

e Hypercube: 2% switches
e de Bruijn-like: 3 switches
e 3-level fat tree: 5k%/4 switches
- 3456 servers, 8192 servers, 27648 servers with
common switch port-counts

Unclear how to maintain structure incrementally

e Opverutilize switches? Uneven / constrained bandwidth
® | eave ports free for later? VWasted investment



Our Solution

Forget about structure —
let’s have no structure at all!



Capacity as a fluid

Jellyfish random graph

432 servers, 180 switches, degree 12



Capacity as a fluid
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Jellyfish random graph Jellyfish

432 servers, |80 switches, degree 12 Arctapodema (http://goo.gl/KoAC3)
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Jellyfish: The Topology
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Random Graph

(Approximately) uniform-randomly Switches are nodes
selected from all valid graphs



Building Jellyfish

=




Building Jellyfish




Building Jellyfish




Building Jellyfish

60% cheaper incremental expansion

compared with past technique for
traditional networks

LEGUP: [Curtis, Keshav, Lopez-Ortiz, CoNEXT’ 0]



"OK, but... does it really work?”



Throughput: Jellyfish vs. fat tree

#Servers at Full Throughput
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Intuition

if we fully utilize all available capacity ...

total capacity

# | Gbps flows = .
used capacity per flow



Intuition

if we fully utilize all available capacity ...

inks capacity(link
# | Gbps flows = —=nks capacity(ink)
used capacity per flow



Intuition

if we fully utilize all available capacity ...

inks capacity(link
# | Gbps flows = —=inks capacity(ink)
| Gbps * mean path length



Intuition

if we fully utilize all available capacity ...

inks capacity(link
# | Gbps flows = —=inks capacity(ink)
| Gbps * mean path length

Mission:

minimize average path length
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Fat tree Jellyfish random graph

432 servers, 180 switches, degree 12 432 servers, 180 switches, degree 12



Example

Fat tree Jellyfish random graph

|6 servers, 20 switches, degree 4 |6 servers, 20 switches, degree 4



Example: Fat Tree

4 of |16 ,/\

reachable ‘
in < 6 hops




Example: Jellyfish

5

4
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13 of 16 »

\
reachable in ,
< 6 hops

Good expander!




Jellyfish has short paths

Fraction of Server Pairs

Path length

Fat-tree ===z

Fat-tree with 686 servers



Jellyfish has short paths

Fraction of Server Pairs

Path length

Jellyfish Fat-tree ===

Same-equipment Jellyfish



What I'm not telling you

How do you route in a network without structure!

How do you cable it?

Ny

Is there anything better than random!?



Software Defined Networking



Networks are complicated

® |ust like any computer system
o Worse:it’s distributed

Network equipment is proprietary

® |ntegrated solutions (software, configuration, protocol
implementations, hardware) from major vendors (Cisco,
Juniper)

Result: Hard to innovate and modify networks



Traditional networking

monolithic,
proprietary,
distributed

protocol

protocol R = protocol

protocol




Software defined networking

software
abstractions

Logically centralized
controller

Thin, standard interface
to data plane
(e.g. OpenFlow)



Making networks programmable

Standard interface to data plane

e Enables innovation in hardware and software

Centralized controller

e Handles state collection and distribution
® Network appears as one big switch

Programming abstractions

e Don’t want to think about each switch
® [ike moving from assembly language to Python / Java

All active areas of current research



From research to reality

Original papers: 2007, 2008

Now:

e Offerings from major vendors and startups (NEC, IBM,
Nicira, ...)
® Deployment in production networks



SDN Deployment at Google, 2012
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Advantages

® Faster reaction to dynamic environment

® Fine-grained control of traffic
= High priority / low priorit

® Test before deploying
= Run real new software on top of simulated hardware
= Only need to simulate the thin interface (OpenFlow)



Our work: debugging the data plane

[Work with Ahmed Khurshid, Haohui Mai, Wenxuan
Zhou, Rachit Agarwal, Matthew Caesar, and Sam King]



Network debugging is challenging

Production networks are complex
* Security policies
* Traffic engineering
* Legacy devices
* Protocol inter-dependencies

* Even well-managed networks can go down

* Few good tools to ensure all networking components
working together correctly



A real example from UIUC's network

Previously, an intrusion
detection and prevention
(IDP) device inspected all
traffic to/from dorms

IDP couldn’t handle load;

added bypass

* |DP only inspected traffic
between dorm and campus

* Seemingly simple changes

Backbone



Challenge: Did it work correctly?

Ping and traceroute provide limited testing of
exponentially large space
« 232 destination IPs * 2!6 destination ports * ...

Bugs not triggered during testing might plague the
system in production runs




Previous approach;
Configuration analysis

—

Cepiatieon -~ Input

G i ------------------------- T—
|
]

_ontrol plane §

) Data plane state §

1
behavior |

OLEWOrK

_Predicted

+ Test before deployment

— Prediction is difficult

* Various configuration
languages

* Dynamic distributed
protocols

— Prediction misses
implementation bugs in
control plane




Our approach: Debugging the data plane

diagnose problems as close as possible to

@onigtkation

N

EONEORPIANE

— Input

_Predicted

actual network behavior

+Less prediction

+Data plane is a “narrower
waist” than configuration

+Unified analysis for multiple
control plane protocols

+Can catch implementation
bugs in control plane

— Checks one snapshot




Anteater from 30,000 feet

Operator

R
/ outer VPN\

Firewalls

/

Data plane
state

Invariants

w

violation?

) oo /

Diagnosis
report

S

Anteater

o -~ .
. -

Results of
SAT solving



Experiences with UIUC network

* Evaluated Anteater with UIUC campus network
« ~|78 routers

* Predominantly OSPF also uses BGP and static routing
* |,627 FIB entries per router (mean)
» State collected using operator’s SNMP scripts

* Revealed 23 bugs with 3 invariants in 2 hours

I T

Being fixed
Stale config. 0 |3 I
False pos. 0 4 I

Total alerts 9 | 7 2



* 9 loops between router
and

e Existed for more than a
month

* Anteater gives one concrete
example of forwarding loop

* Given this example, relatively easy
for operators to fix

S anteater

Loop:
128.163.250.30@bypass



Forwarding loops

DPN

* Previously, dorm
connected to |DP
directly

* |IDP inspected all traffic
to/from dorms

0000004
wococon [ X

Backbone



Forwarding loops

* |IDP was overloaded,
operator introduced

bypass /'
* |DP only inspected

traffic for campus

woocon [ 4

0000000 Y

* bypass routed campus
traffic to |DP through
static routes

* Introduced loops

Backbone



Bugs found by other invanants

Packet loss Consistency

(—D _ Admin.
Q—X—» 4 Q‘\\\\ interface
<D ~ 192.168.1.0/24

* One router exposed web

* Stale configuration admin interface in FIB
From Sep, 2008

* Blocking compromised
machines at IP level

* Different policy on private |P
address range

Maintaining compatibility



Goal:Verify network-wide invariants in real time

® Verify correctness continually as network state changes
e ~ one millisecond or less per verification

¢ (Can provide immediate warning, or block dangerous
modifications

Challenge #1: Obtaining real time view of network

® Solution: interpose between Software Defined
Networking (SDN) controller and routers/switches

Challenge #2:Verification speed

e Solution:Algorithms :-)



Software defined networking

software
abstractions

Logically centralized
controller

Thin, standard interface
to data plane
(e.g. OpenFlow)



VeriFlow architecture

software
abstractions

Logically centralized
controller

Thin, standard interface
to data plane
(e.g. OpenFlow)



Checking in real time

Split possible packet headers into equivalence classes

0.0.0.0/1 64.0.0.0/3

Fwd'ing rules [
Equiv classes  m——je e ]

Construct forwarding graph for each class

®
0/ \‘/‘
®
o\)\./
On rule insert/delete:

e Update equivalence classes
® For modified classes, update graphs & verify invariants



Results: Verification time
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Closing Thoughts:
Why Networking Research?






IPv4 & IPv6 INTERNET TOPOLOGY MAP JANUARY 2009
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Affected prefixes

Routing instabilities and outages in Iranian prefixes
following 2009 presidential election

Friday Saturday Sunday
June 12 June 13 June |4

[James Cowie,
Renesys Corporation]



Routing instabilities and outages in Georgian prefixes
following 2008 South Ossetia War
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Majority of new developments in computer systems
are dependent on networking

Far-reaching impacts beyond systems & networking



1. It's relevant

Information
Algorithms theory

systems
Game \ Databases
theory \ /

Networking Operatin
Economics & S ©

\ systems
Human-computer
Policy interaction

Social sciences

Distributed

Security  Forensics



~35 years since the birth of the field

But only ~15 years since networks in widespread use

® tussles between businesses, peer-to-peer systems,
malware, denial of service attacks, content distribution
networks, all fundamental but relatively new!

Operating systems: ~30 years in widespread use

Physics: ~13.75 billion years in widespread use



3. It's changing

Network new people, new technologies, connect
disciplines, “make order out of chaos” (— Jen Rexford)

Start a new subfield!

® |n the last decade: Peer-to-peer, sensor networks, data
centers, cloud, energy, Internet architecture, cell, ...
® A new subfield every ~2 years — rapid change!

You can change not just the

technology, but the field!



3. It's changing

About 2/3 of the world not yet online!



It is anticipated that the
whole of the populous
barts of the United States
will, within two or three
years, be covered with net-
work like a spider's web.

— The London Anecdotes,
| 848




What it all adds up to...

You have the opportunity

for big impact!



