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Cloud Computing

Cloud Computing: Computing as a utility

• Purchase however much you need, whenever you need it
• Service ranges from access to raw (virtual) machines, to 

higher level: distributed storage, web services

Implications

• Reduces barrier to entry to building large service
- No need for up-front capital investment
• No need to plan ahead
• Reduces cost
• Compute and storage becomes more centralized



“The Cloud”: Data Centers

Facebook data center, North Carolina

National Petascale Computing Facility, 
UIUC



Key advantage: economy of scale

One technician for each 15,000 servers [Facebook]

Facility / power infrastructure operated in bulk

Ability to custom-design equipment

• Facebook (servers), Google (servers & networking gear)

Statistical multiplexing

• Must provision for peak load
• Many users sharing a resource are unlikely to have their 

peaks all at the same time



Leonard Kleinrock: queueing-theoretic analysis 
of packet switching in MIT Ph.D. thesis 
(1961-63) demonstrated value of statistical 
multiplexing

Concurrent work from Paul Baran (RAND), 
Donald Davies (National Physical Labratories, 
UK)

1961-64: Packet switching

Kleinrock

Baran

Circuit switching

Time

Packet switching:
multiplexed

Time



Challenges for Cloud Computing

Confidentiality of data and computation

Integration with existing systems

Robustness

Latency

Bandwidth

Programmability



Outline

Importance of low latency to the cloud

High bandwidth within the cloud

Programmable networks

Closing thoughts: Networking Research



Low Latency
to the Cloud



Low latency to the cloud

Cloud implies data and computation outsourced and 
partially centralized

• i.e., physically more distant from users

Fundamental Challenge:
How do we make the net feel like it is right here

even when it is distant?

Aside: How much does
latency matter to humans?



Milliseconds matter

Hiromi Uehara
“Kung Fu World Champion”

88 msec per note



Milliseconds matter

Speed Matters for Google Web Search
Jake Brutlag

Google, Inc.

June 22, 2009

Abstract – Experiments demonstrate that increasing

web search latency 100 to 400 ms reduces the daily

number of searches per user by 0.2% to 0.6%. Fur-

thermore, users do fewer searches the longer they are

exposed. For longer delays, the loss of searches per-

sists for a time even after latency returns to previous

levels.

Google runs experiments on search traffic to understand

and improve the search experience. A series of such ex-

periments injected different types of server-side delay into
the search results page load in order to understand the

impact of latency on user behavior. In a given experiment,
one group of users experienced the delay, while a second

group served as the control. Across the experiments, the

type of delay, the magnitude of the delay, and experiment
duration (number of weeks users subject to delay) varied.

Speed as perceived by the end user is driven by multi-

ple factors. These experiments model only one of them:
additional server processing time. Figure 1 illustrates the

three types of delay tested; the type of delay distinguishes
when the delay occurs in the sequence of steps that con-

stitute a page load.

Figure 1: Injecting Server-Side Delay

In Figure 1, time flows from left to right and diago-

nal lines represent network communication between the
client and server. A user perceives load time as the du-

ration from start of navigation until page complete. The

page load may include optional activities (in blue), but
every search includes an HTTP request for the page

HTML, spanning the duration between GET and Last

Byte. Server processing commences upon receipt of the
HTTP GET. Google search leverages HTTP chunking,

which means the page header can be transmitted (and
perhaps rendered) even before the results are ready.

The different types of delay tested are:

pre-header pausing all server processing for X ms
immediately upon receipt of the HTTP GET

post-header pausing for X ms after transmitting the

page header but before any further server
processing is done

post-ads pausing X ms mid-stream sending the results,
after the sponsored links

Both the post-header and post-ads delay may be masked

by network conditions. That is, a slow or unreliable con-
nection may mitigate any delay in server processing from

the user’s perspective. All three types of delay may be

perceived differently by users due to the degree of partial

rendering on the page.
All other things being equal, more usage, as measured

by number of searches, reflects more satisfied users. Ta-
ble 1 gives the average daily searches per user over the

experiment duration for the experiment group relative to

the control group.

Table 1: Experiment Impact on Daily Searches Per User

Type of Delay Magnitude Duration Impact

Pre-header 50 ms 4 weeks —

Pre-header 100 ms 4 weeks −0.20%
Post-header 200 ms 6 weeks −0.29%

Post-header 400 ms 6 weeks −0.59%

Post-ads 200 ms 4 weeks −0.30%

Average impact over 4 or 6 weeks hides any trend over
time. By focusing on the subset of users who were part of

the experiment (or control group) from the beginning (as
identified by a browser cookie), one can determine if there

is such a trend. Figure 2 illustrates the trend for the two 6

week experiments.

Figure 2: Impact of Post-header Delays Over Time
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The change over time can be quantified by dividing the

6 week duration in half. The impact on daily searches
per user during the second half is −0.36% and −0.74%

for the 200 ms and 400 ms delay respectively, compared

to −0.22% and −0.44% for the first half. Users do fewer
searches the longer they are exposed to delay.

Furthermore, observing these users for the 400 ms de-

lay after we stop subjecting them to the delay, the rate of
daily searches per user for the experiment is still −0.21%

relative to the control (averaged over the 5 weeks af-
ter removal of the delay). For longer delays, the loss of

searches persists for a time even after latency returns to

previous levels.

[Jake Brutlag, Google, 2009]
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Cloud implies data and computation outsourced and 
partially centralized

• i.e., physically more distant from users

Possible solutions:

• Bring the cloud closer: “micro-clouds”
• Reduce network latency: better protocols
- Lots of room for improvement!

Low latency to the cloud

Fundamental Challenge:
How do we make the net feel like it is right here

even when it is distant?



High Bandwidth
Within the Cloud



Costs in a data center

Servers are expensive!

The Cost of a Cloud:
Research Problems in Data Center Networks

Albert Greenberg, James Hamilton, David A. Maltz, Parveen Patel
Microsoft Research, Redmond, WA, USA

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The author takes full responsibility for this article’s technical content. Comments can be posted through CCR Online.

Abstract
The data centers used to create cloud services represent a signifi-
cant investment in capital outlay and ongoing costs. Accordingly,
we first examine the costs of cloud service data centers today. The
cost breakdown reveals the importance of optimizing work com-
pleted per dollar invested. Unfortunately, the resources inside the
data centers often operate at low utilization due to resource strand-
ing and fragmentation. To attack this first problem, we propose (1)
increasing network agility, and (2) providing appropriate incentives
to shape resource consumption. Second, we note that cloud service
providers are building out geo-distributed networks of data centers.
Geo-diversity lowers latency to users and increases reliability in the
presence of an outage taking out an entire site. However, without
appropriate design and management, these geo-diverse data center
networks can raise the cost of providing service. Moreover, leverag-
ing geo-diversity requires services be designed to benefit from it. To
attack this problem, we propose (1) joint optimization of network
and data center resources, and (2) new systems and mechanisms for
geo-distributing state.
Categories and Subject Descriptors: C.2.1 Network Architecture
General Terms: Design, Economics
Keywords: Cloud-service data centers, costs, network challenges

1. INTRODUCTION
In recent years, large investments have been made in mas-

sive data centers supporting cloud services, by companies such as
eBay, Facebook, Google, Microsoft, and Yahoo!. In this paper, we
attempt to demystify the structure of these data centers, and to iden-
tify areas of opportunity for R&D impact in data center networks
and systems. We start our investigation with the question:

Where does the cost go in today’s cloud service data centers?

To quantify data center costs, we consider a data center hous-
ing on the order of 50,000 servers that would be built based on
currently well-understood techniques, using good quality, highly
available equipment. Table 1 provides a rough guide to associated
costs. Costs are amortized, i.e., one time purchases are amortized
over reasonable lifetimes, assuming a 5% cost of money. By amor-
tizing, we obtain a common cost run rate metric that we can apply
to both one time purchases (e.g., for servers) and ongoing expenses
(e.g., for power). We discuss each row in detail in Section 2.

Details may vary somewhat by site or by moment in time,
but these are the major costs. While networking is not the largest
cost category, this paper will argue that networking and systems
innovation is the key to reducing costs and getting the most out of
each dollar invested.

Amortized Cost Component Sub-Components
⇠45% Servers CPU, memory, storage systems
⇠25% Infrastructure Power distribution and cooling
⇠15% Power draw Electrical utility costs
⇠15% Network Links, transit, equipment

Table 1: Guide to where costs go in the data center.

1.1 Cloud Service Data Centers are Different
It is natural to ask why existing solutions for the enterprise

data center do not work for cloud service data centers.
First and foremost, the leading cost in the enterprise is opera-

tional staff. In the data center, such costs are so small (under 5% due
to automation), that we safely omit them from Table 1. In a well-run
enterprise, a typical ratio of IT staff members to servers is 1:100.
Automation is partial [25], and human error is the cause of a large
fraction of performance impacting problems [21]. In cloud service
data centers, automation is a mandatory requirement of scale, and
it is accordingly a foundational principle of design [20]. In a well
run data center, a typical ratio of staff members to servers is 1:1000.
Automated, recovery-oriented computing techniques cope success-
fully with the vast majority of problems that arise [20, 12].

There are additional differences between the enterprise and
the cloud service data center environments including:

Large economies of scale. The size of cloud scale data cen-
ters (some now approaching 100,000 severs) presents an opportu-
nity to leverage economies of scale not present in the enterprise
data centers, though the up front costs are high.

Scale Out. Enterprises often optimize for physical space and
number of devices, consolidating workload onto a small number of
high-price “scale-up” hardware devices and servers. Cloud service
data centers “scale-out” — distributing workload over large num-
bers of low cost servers and hardware.

That said, enterprises are also moving toward the cloud. Thus,
we expect innovation in cloud service data centers to benefit the
enterprise, through outsourcing of computing and storage to cloud
service providers [1, 8, 3], and/or adapting and scaling down tech-
nologies and business models from cloud service providers.

1.2 Types of Cloud Service Data Centers
Many cloud service data centers today may be termed mega

data centers, having on the order of tens of thousands or more
servers drawing tens of Mega-Watts of power at peak. Massive
data analysis applications (e.g., computing the web search index)
are a natural fit for a mega data center, where some problems re-
quire huge amounts of fast RAM, others require massive num-
bers of CPU cycles, and still others require massive disk I/O band-
width. These problems typically call for extensive communication

[Greenberg, CCR Jan. 2009]



Goal: Agility

Agility: Use any server for any service at any time

• Increase utilization of servers
• Reduce costs, increase reliability

What we need: [Greenberg, ICDCS’09]

• Rapid installation of service’s code
- Solution: virtual machines

• Access to data from anywhere
- Solution: distributed filesystems

• Ability to communicate between servers quickly, 
regardless of where they are in the data center



Traditional data center network

3. AGILITY
We define agility inside a single data center to mean that any

server can be dynamically assigned to any service anywhere in
the data center, while maintaining proper security and performance
isolation between services. Unfortunately, conventional data center
network designs work against agility - by their nature fragmenting
both network and server capacity, and limiting the dynamic grow-
ing and shrinking of server pools. In this section, we first look at
the network within the data center as it exists today and then dis-
cuss some desirable properties for a better solution.

3.1 Networking in Current Data Centers
Multiple applications run inside a single data center, typically

with each application hosted on its own set of (potentially virtual)
server machines. A single data center network supports two types
of traffic: (a) traffic flowing between external end systems and inter-
nal servers, and (b) traffic flowing between internal servers. A given
application typically involves both of these traffic types. In Search
applications, for example, internal traffic dominates – building and
synchronizing instances of the index. In Video download applica-
tions, external traffic dominates.

To support external requests from the Internet, an application
is associated with one or more publicly visible and routable IP
addresses to which clients in the Internet send their requests and
from which they receive replies. Inside the data center, requests are
spread among a pool of front-end servers that process the requests.
This spreading is typically performed by a specialized hardware
load balancer [23]. Using conventional load-balancer terminology,
the IP address to which requests are sent is called a virtual IP ad-
dress (VIP) and the IP addresses of the servers over which the re-
quests are spread are known as direct IP addresses (DIPs).

and Design
Figure 2: The conventional network architecture for data cen-
ters (adapted from figure by Cisco [15]).

Figure 2 shows the conventional architecture for a data center,
taken from a recommended source [15]. Requests arriving from the
Internet are IP (layer 3) routed through border and access routers
to a layer 2 domain based on the destination VIP address. The
VIP is configured onto the two load balancers connected to the top
switches, and complex mechanisms are used to ensure that if one
load balancer fails, the other picks up the traffic [24]. For each VIP,
the load balancers are configured with a list of DIPs, internal IP
addresses over which they spread incoming requests.

As shown in the figure, all the servers that connect into a pair
of access routers comprise a single layer 2 domain. With conven-
tional network architectures and protocols, a single layer-2 domain
is limited in size to about 4,000 servers in practice, driven by the
need for rapid reconvergence upon failure. Since the overhead of
broadcast traffic (e.g., ARP) limits the size of an IP subnet to a few

hundred servers, the layer 2 domain is divided up into subnets using
VLANs configured on the Layer 2 switches, one subnet per VLAN.

The conventional approach has the following problems that
inhibit agility:

Static Network Assignment: To support internal traffic within
the data center, individual applications are mapped to specific phys-
ical switches and routers, relying heavily on VLANs and layer-3
based VLAN spanning [19] to cover the servers dedicated to the
application. While the extensive use of VLANs and direct phys-
ical mapping of services to switches and routers provides a de-
gree of performance and security isolation, these practices lead to
two problems that ossify the assignment and work against agility:
(a) VLANs are often policy-overloaded, integrating traffic manage-
ment, security, and performance isolation, and (b) VLAN spanning,
and use of large server pools in general, concentrates traffic on links
high in the tree, where links and routers are highly overbooked.

Fragmentation of resources: Popular load balancing tech-
niques, such as destination NAT (or half-NAT) and direct server
return, require that all DIPs in a VIP’s pool be in the same layer
2 domain [23]. This constraint means that if an application grows
and requires more front-end servers, it cannot use available servers
in other layer 2 domains - ultimately resulting in fragmentation and
under-utilization of resources. Load balancing via Source NAT (or
full-NAT) does allow servers to be spread across layer 2 domains,
but then the servers never see the client IP, which is often unac-
ceptable because servers use the client IP for everything from data
mining and response customization to regulatory compliance.

Poor server to server connectivity: The hierarchical nature
of the network means that communication between servers in dif-
ferent layer 2 domains must go through the layer 3 portion of the
network. Layer 3 ports are significantly more expensive than layer
2 ports, owing in part to the cost of supporting large buffers, and
in part to marketplace factors. As a result, these links are typically
oversubscribed by factors of 10:1 to 80:1 (i.e., the capacity of the
links between access routers and border routers is significantly less
than the sum of the output capacity of the servers connected to the
access routers). The result is that the bandwidth available between
servers in different parts of the DC can be quite limited. Manag-
ing the scarce bandwidth could be viewed as a global optimization
problem – servers from all applications must be placed with great
care to ensure the sum of their traffic does not saturate any of the
network links. Unfortunately, achieving this level of coordination
between (changing) applications is untenable in practice.

Proprietary hardware that scales up, not out: Conventional
load balancers are used in pairs in a 1+1 resiliency configuration.
When the load becomes too great for the load balancers, operators
replace the existing load balancers with a new pair having more
capacity, which is an unscalable and expensive strategy.

3.2 Design Objectives
In order to achieve agility within a data center, we argue the

network should have the following properties:
Location-independent Addressing: Services should use loca-

tion-independent addresses that decouple the server’s location in
the DC from its address. This enables any server to become part of
any server pool while simplifying configuration management.

UniformBandwidth and Latency: If the available bandwidth
between two servers is not dependent on where they are located,
then the servers for a given service can be distributed arbitrarily in
the data center without fear of running into bandwidth choke points.
Uniform bandwidth, combined with uniform latency between any
two servers would allow services to achieve same performance re-
gardless of the location of their servers.

[Greenberg et al, CCR Jan. 2009]
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of access routers comprise a single layer 2 domain. With conven-
tional network architectures and protocols, a single layer-2 domain
is limited in size to about 4,000 servers in practice, driven by the
need for rapid reconvergence upon failure. Since the overhead of
broadcast traffic (e.g., ARP) limits the size of an IP subnet to a few

hundred servers, the layer 2 domain is divided up into subnets using
VLANs configured on the Layer 2 switches, one subnet per VLAN.

The conventional approach has the following problems that
inhibit agility:

Static Network Assignment: To support internal traffic within
the data center, individual applications are mapped to specific phys-
ical switches and routers, relying heavily on VLANs and layer-3
based VLAN spanning [19] to cover the servers dedicated to the
application. While the extensive use of VLANs and direct phys-
ical mapping of services to switches and routers provides a de-
gree of performance and security isolation, these practices lead to
two problems that ossify the assignment and work against agility:
(a) VLANs are often policy-overloaded, integrating traffic manage-
ment, security, and performance isolation, and (b) VLAN spanning,
and use of large server pools in general, concentrates traffic on links
high in the tree, where links and routers are highly overbooked.

Fragmentation of resources: Popular load balancing tech-
niques, such as destination NAT (or half-NAT) and direct server
return, require that all DIPs in a VIP’s pool be in the same layer
2 domain [23]. This constraint means that if an application grows
and requires more front-end servers, it cannot use available servers
in other layer 2 domains - ultimately resulting in fragmentation and
under-utilization of resources. Load balancing via Source NAT (or
full-NAT) does allow servers to be spread across layer 2 domains,
but then the servers never see the client IP, which is often unac-
ceptable because servers use the client IP for everything from data
mining and response customization to regulatory compliance.

Poor server to server connectivity: The hierarchical nature
of the network means that communication between servers in dif-
ferent layer 2 domains must go through the layer 3 portion of the
network. Layer 3 ports are significantly more expensive than layer
2 ports, owing in part to the cost of supporting large buffers, and
in part to marketplace factors. As a result, these links are typically
oversubscribed by factors of 10:1 to 80:1 (i.e., the capacity of the
links between access routers and border routers is significantly less
than the sum of the output capacity of the servers connected to the
access routers). The result is that the bandwidth available between
servers in different parts of the DC can be quite limited. Manag-
ing the scarce bandwidth could be viewed as a global optimization
problem – servers from all applications must be placed with great
care to ensure the sum of their traffic does not saturate any of the
network links. Unfortunately, achieving this level of coordination
between (changing) applications is untenable in practice.

Proprietary hardware that scales up, not out: Conventional
load balancers are used in pairs in a 1+1 resiliency configuration.
When the load becomes too great for the load balancers, operators
replace the existing load balancers with a new pair having more
capacity, which is an unscalable and expensive strategy.

3.2 Design Objectives
In order to achieve agility within a data center, we argue the

network should have the following properties:
Location-independent Addressing: Services should use loca-

tion-independent addresses that decouple the server’s location in
the DC from its address. This enables any server to become part of
any server pool while simplifying configuration management.

UniformBandwidth and Latency: If the available bandwidth
between two servers is not dependent on where they are located,
then the servers for a given service can be distributed arbitrarily in
the data center without fear of running into bandwidth choke points.
Uniform bandwidth, combined with uniform latency between any
two servers would allow services to achieve same performance re-
gardless of the location of their servers.

[Greenberg et al, CCR Jan. 2009]
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the data center without fear of running into bandwidth choke points.
Uniform bandwidth, combined with uniform latency between any
two servers would allow services to achieve same performance re-
gardless of the location of their servers.

[Greenberg et al, CCR Jan. 2009]



Need for high bandwidth increasing

Big data processing tasks becoming more common

• Web indexing, machine learning, storage replication, ...

[Facebook]



VL2: A Scalable and Flexible
Data Center Network

[Greenberg, Hamilton, Jain, Kandula, Kim, Lahiri, Maltz, 
Patel, Sengupta, SIGCOMM 2009]

Key features:

• Flat addressing
- Ethernet-style (layer 2) addresses to forward data, 

rather than IP addresses
- Separates names from locations
• Randomized load balancing
- Makes better use of network resources 
• High bandwidth network
- Folded Clos network
- Special case: fat tree



“Fat tree” network

Pod 0

10.0.2.1

10.0.1.1

Pod 1 Pod 3Pod 2
10.2.0.2 10.2.0.3

10.2.0.1

10.4.1.1 10.4.1.2 10.4.2.1 10.4.2.2
Core

10.2.2.1

10.0.1.2

Edge

Aggregation

Figure 3: Simple fat-tree topology. Using the two-level routing tables described in Section 3.3, packets from source 10.0.1.2 to
destination 10.2.0.3 would take the dashed path.

Prefix
10.2.0.0/24
10.2.1.0/24
0.0.0.0/0

Output port
0
1

Suffix
0.0.0.2/8
0.0.0.3/8

Output port
2
3

Figure 4: Two-level table example. This is the table at switch
10.2.2.1. An incoming packet with destination IP address
10.2.1.2 is forwarded on port 1, whereas a packet with desti-
nation IP address 10.3.0.3 is forwarded on port 3.

than one first-level prefix. Whereas entries in the primary table are
left-handed (i.e., /m prefix masks of the form 1m032−m), entries
in the secondary tables are right-handed (i.e. /m suffix masks of
the form 032−m1m). If the longest-matching prefix search yields
a non-terminating prefix, then the longest-matching suffix in the
secondary table is found and used.

This two-level structure will slightly increase the routing table
lookup latency, but the parallel nature of prefix search in hardware
should ensure only a marginal penalty (see below). This is helped
by the fact that these tables are meant to be very small. As shown
below, the routing table of any pod switch will contain no more
than k/2 prefixes and k/2 suffixes.

3.4 Two-Level Lookup Implementation
We now describe how the two-level lookup can be implemented

in hardware using Content-Addressable Memory (CAM) [9].
CAMs are used in search-intensive applications and are faster
than algorithmic approaches [15, 29] for finding a match against
a bit pattern. A CAM can perform parallel searches among all
its entries in a single clock cycle. Lookup engines use a special
kind of CAM, called Ternary CAM (TCAM). A TCAM can store
don’t care bits in addition to matching 0’s and 1’s in particular
positions, making it suitable for storing variable length prefixes,
such as the ones found in routing tables. On the downside, CAMs
have rather low storage density, they are very power hungry, and

Next hop
10.2.0.1
10.2.1.1
10.4.1.1
10.4.1.2

Address
00
01
10
11

Output port
0
1
2
3

RAM

Encoder

10.2.0.X
10.2.1.X
X.X.X.2
X.X.X.3

TCAM

Figure 5: TCAM two-level routing table implementation.

expensive per bit. However, in our architecture, routing tables can
be implemented in a TCAM of a relatively modest size (k entries
each 32 bits wide).

Figure 5 shows our proposed implementation of the two-level
lookup engine. A TCAM stores address prefixes and suffixes,
which in turn indexes a RAM that stores the IP address of the next
hop and the output port. We store left-handed (prefix) entries in
numerically smaller addresses and right-handed (suffix) entries in
larger addresses. We encode the output of the CAM so that the
entry with the numerically smallest matching address is output.
This satisfies the semantics of our specific application of two-level
lookup: when the destination IP address of a packet matches both a
left-handed and a right-handed entry, then the left-handed entry is
chosen. For example, using the routing table in Figure 5, a packet
with destination IP address 10.2.0.3 matches the left-handed entry
10.2.0.X and the right-handed entry X.X.X.3. The packet is
correctly forwarded on port 0. However, a packet with destination
IP address 10.3.1.2 matches only the right-handed entry X.X.X.2
and is forwarded on port 2.

3.5 Routing Algorithm
The first two levels of switches in a fat-tree act as filtering traf-

fic diffusers; the lower- and upper-layer switches in any given pod
have terminating prefixes to the subnets in that pod. Hence, if a
host sends a packet to another host in the same pod but on a dif-
ferent subnet, then all upper-level switches in that pod will have a
terminating prefix pointing to the destination subnet’s switch.

For all other outgoing inter-pod traffic, the pod switches have
a default /0 prefix with a secondary table matching host IDs (the

67

Figure from [Al Fares et al, SIGCOMM 2008]

Nonblocking: servers limited only by their 
network card’s speed, regardless of 

communication pattern between servers



“Fat tree” network



Our work: Jellyfish

High throughput

Eliminate bottlenecks
“Agile” network

Incremental expandability

Easily add/replace
servers & switches

Datacenter Networks

Are In My Way

Principals of Amazon

James Hamilton, 2010.10.28

e: James@amazon.com

blog: perspectives.mvdirona.com

With Albert Greenberg, Srikanth Kandula, Dave Maltz, Parveen Patel, Sudipta 

Sengupta, Changhoon Kim, Jagwinder Brar, Justin Pietsch, Tyson Lamoreaux, 

Dhiren Dedhia, Alan Judge, Dave O'Meara, & Mike Marr

2007 1008 09

of Facebook

[Singla, Hong, Popa, Godfrey, NSDI’12]



Structure constrains expansion

Coarse design points

• Hypercube: 2k switches
• de Bruijn-like: 3k switches
• 3-level fat tree: 5k2/4 switches
- 3456 servers, 8192 servers, 27648 servers with 

common switch port-counts

Unclear how to maintain structure incrementally

• Overutilize switches? Uneven / constrained bandwidth
• Leave ports free for later? Wasted investment



Our Solution

Forget about structure –
let’s have no structure at all!



Capacity as a fluid

Jellyfish random graph
432 servers, 180 switches, degree 12



Capacity as a fluid

Jellyfish random graph
432 servers, 180 switches, degree 12

Jellyfish
Arctapodema (http://goo.gl/KoAC3)

[Photo: Bill Curtsinger, National Geographic]

http://goo.gl/KoAC3
http://goo.gl/KoAC3


Jellyfish: The Topology

Switch'

Server'
ports'

Server''

Server'

Random'''Regular'''Graph'

Switches'are'nodes'
Each'node'has''
the'same'degree'

Uniform'randomly'
selected'from'all'
regular'graphs'

Switch'

Switch'

Graph

Switches are nodes

GraphRandom

(Approximately) uniform-randomly 
selected from all valid graphs

Random



Building Jellyfish



Building Jellyfish

X



Building Jellyfish

X

X



Building Jellyfish

60% cheaper incremental expansion
compared with past technique for

traditional networks

LEGUP: [Curtis, Keshav, Lopez-Ortiz, CoNEXT’10]



“OK, but... does it really work?”



Throughput: Jellyfish vs. fat tree
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more
servers



Intuition

# 1 Gbps flows
total capacity

used capacity per flow
=

if we fully utilize all available capacity ...



Intuition

# 1 Gbps flows
∑links capacity(link)

used capacity per flow
=

if we fully utilize all available capacity ...



Intuition

# 1 Gbps flows
∑links capacity(link)

1 Gbps • mean path length
=

if we fully utilize all available capacity ...



Intuition

# 1 Gbps flows
∑links capacity(link)

1 Gbps • mean path length
=

if we fully utilize all available capacity ...

Mission:
minimize average path length



Example

Fat tree
432 servers, 180 switches, degree 12

Jellyfish random graph
432 servers, 180 switches, degree 12



Example

Fat tree
16 servers, 20 switches, degree 4

Jellyfish random graph
16 servers, 20 switches, degree 4



Example: Fat Tree

origin

4 of 16
reachable 

in < 6 hops



Example: Jellyfish

origin13 of 16
reachable in 

< 6 hops

1

2

3

45

Good expander!



Jellyfish has short paths













    


















Fat-tree with 686 servers



Jellyfish has short paths














    




















 

Same-equipment Jellyfish



≈ ?

What I’m not telling you

How do you route in a network without structure?

How do you cable it?

Is there anything better than random?



Software Defined Networking



The Problem

Networks are complicated

• Just like any computer system
• Worse: it’s distributed

Network equipment is proprietary

• Integrated solutions (software, configuration, protocol 
implementations, hardware) from major vendors (Cisco, 
Juniper)

Result: Hard to innovate and modify networks



monolithic,
proprietary,
distributed

Traditional networking

protocol

protocol

protocol

protocol

protocol
protocol



Software defined networking

Thin, standard interface
to data plane
(e.g. OpenFlow)

Logically centralized
controller

software
abstractions

app app



Making networks programmable

Standard interface to data plane

• Enables innovation in hardware and software

Centralized controller

• Handles state collection and distribution
• Network appears as one big switch

Programming abstractions

• Don’t want to think about each switch
• Like moving from assembly language to Python / Java

All active areas of current research



From research to reality

Original papers: 2007, 2008

Now:

• Offerings from major vendors and startups (NEC, IBM, 
Nicira, ...)
• Deployment in production networks



SDN Deployment at Google, 2012

Advantages

• Faster reaction to dynamic environment
• Fine-grained control of traffic
- High priority / low priority
• Test before deploying
- Run real new software on top of simulated hardware
- Only need to simulate the thin interface (OpenFlow)

*RRJOH�&RQILGHQWLDO�DQG�3URSULHWDU\

*RRJOH
V�2SHQ)ORZ�:$1



Our work: debugging the data plane

[Work with Ahmed Khurshid, Haohui Mai, Wenxuan 
Zhou, Rachit Agarwal, Matthew Caesar, and Sam King]



Network debugging is challenging

Production networks are complex
• Security policies
• Traffic engineering
• Legacy devices
• Protocol inter-dependencies
• …

• Even well-managed networks can go down
• Few good tools to ensure all networking components 

working together correctly



A real example from UIUC’s network

Previously, an intrusion 
detection and prevention 
(IDP) device inspected all 
traffic to/from dorms

IDP couldn’t handle load; 
added bypass
• IDP only inspected traffic 

between dorm and campus
• Seemingly simple changes

…

Backbone

dorm

IDP

bypass



Challenge: Did it work correctly?

Ping and traceroute provide limited testing of 
exponentially large space
• 232 destination IPs * 216 destination ports * …

Bugs not triggered during testing might plague the 
system in production runs



Previous approach:
Configuration analysis

+Test before deployment

-Prediction is difficult
• Various configuration 

languages
• Dynamic distributed 

protocols

-Prediction misses 
implementation bugs in 
control plane

Configuration

Control plane

Data plane state

Network 
behavior

Input

Predicted



Our approach: Debugging the data plane

+Less prediction

+Data plane is a “narrower 
waist” than configuration
+Unified analysis for multiple 

control plane protocols

+Can catch implementation 
bugs in control plane

-Checks one snapshot

Configuration

Control plane

Data plane state

Network 
behavior

Input

Predicted

diagnose problems as close as possible to 
actual network behavior



Anteater from 30,000 feet

Diagnosis 
report

Invariants

Data plane 
state

SAT 
formulas

Results of 
SAT solving

Operator AnteaterRouter

Firewalls

VPN

∃Loops?
∃Security policy

    violation?
…



Experiences with UIUC network

• Evaluated Anteater with UIUC campus network
• ～178 routers

• Predominantly OSPF, also uses BGP and static routing
• 1,627 FIB entries per router (mean)
• State collected using operator’s SNMP scripts

• Revealed 23 bugs with 3 invariants in 2 hours

Loop Packet loss Consistency

  Being fixed 9 0 0

  Stale config. 0 13 1

  False pos. 0 4 1

Total alerts 9 17 2



Forwarding loops

• 9 loops between router 
dorm and bypass
• Existed for more than a 

month

• Anteater gives one concrete 
example of forwarding loop
• Given this example, relatively easy 

for operators to fix

dorm

bypass

$ anteater 
Loop: 
128.163.250.30@bypass



Backbone

Forwarding loops

• Previously, dorm  
connected to IDP 
directly
• IDP inspected all traffic 

to/from dorms

…

dorm

IDP



Backbone

Forwarding loops

• IDP was overloaded, 
operator introduced 
bypass
• IDP only inspected 

traffic for campus

• bypass routed campus 
traffic to IDP through 
static routes
• Introduced loops

…

dorm

IDP

bypass



Bugs found by other invariants

u X u

u’

Admin. 
interface

192.168.1.0/24

Packet loss

• Blocking compromised 
machines at IP level
• Stale configuration

From Sep, 2008

Consistency

• One router exposed web 
admin interface in FIB
• Different policy on private IP 

address range
Maintaining compatibility



VeriFlow

Goal: Verify network-wide invariants in real time

• Verify correctness continually as network state changes
• ~ one millisecond or less per verification
• Can provide immediate warning, or block dangerous 

modifications

Challenge #1: Obtaining real time view of network

• Solution: interpose between Software Defined 
Networking (SDN) controller and routers/switches

Challenge #2: Verification speed

• Solution: Algorithms :-)



Software defined networking

Thin, standard interface
to data plane
(e.g. OpenFlow)

Logically centralized
controller

software
abstractions

app app



VeriFlow architecture

Thin, standard interface
to data plane
(e.g. OpenFlow)

Logically centralized
controller

software
abstractions

app app

VeriFlow



Split possible packet headers into equivalence classes

Construct forwarding graph for each class

On rule insert/delete:

• Update equivalence classes
• For modified classes, update graphs & verify invariants

Fwd’ing rules

Checking in real time

Equiv classes

0.0.0.0/1 64.0.0.0/3



Results: Verification time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000  100000

C
D

F

Time (microseconds)

Graph cache update
Equivalence class search

Graph build
Query

Total verification

Simulated network: BGP DFZ RIBs and update trace from 
RouteViews injected into 172-router AS 1755 topology,

checking reachability invariant



Closing Thoughts:
Why Networking Research?
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[James Cowie,
Renesys Corporation]

Routing instabilities and outages in Iranian prefixes
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[Earl Zmijewski, 
Renesys Corporation]

Routing instabilities and outages in Georgian prefixes
following 2008 South Ossetia War
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Fri, Aug 8, 2008



1. It’s relevant

Majority of new developments in computer systems 
are dependent on networking

Far-reaching impacts beyond systems & networking



1. It’s relevant

Algorithms
Information

theory

Game
theory

Economics

Policy

Security Forensics

Distributed
systems

Databases

Human-computer
interaction

Operating
systems

Social sciences

Networking



2. It’s new

~35 years since the birth of the field

But only ~15 years since networks in widespread use

• tussles between businesses, peer-to-peer systems, 
malware, denial of service attacks, content distribution 
networks, all fundamental but relatively new!

Operating systems: ~30 years in widespread use

Physics: ~13.75 billion years in widespread use



Network new people, new technologies, connect 
disciplines, “make order out of chaos” (– Jen Rexford)

Start a new subfield!

• In the last decade: Peer-to-peer, sensor networks, data 
centers, cloud, energy, Internet architecture, cell, ...
• A new subfield every ~2 years – rapid change!

3. It’s changing

You can change not just the 
technology, but the field!



3. It’s changing

About 2/3 of the world not yet online!



–– The London Anecdotes,
1848

“

”

It is anticipated that the 
whole of the populous 
parts of the United States 
will, within two or three 
years, be covered with net-
work like a spider's web.



What it all adds up to...

You have the opportunity 
for big impact!


