Networks and Games

Brighten Godfrey
Discover Engineering CS Camp July 24, 2012

Demo

[Huffaker, claffy, Hyun, Luckie, Lyu, CAIDA]

Games \& networks: a natural fit

$\stackrel{\sigma}{\underline{W}}$

Games \& networks: a natural fit

Game theory
Studies interaction
between selfish agents

Games \& networks: a natural fit

Game theory

Studies interaction between selfish agents

Networking
Enables interaction between agents

Games \& networks: a natural fit

Game theory

Studies interaction between selfish agents

Networking
Enables interaction between agents

Networks make games happen!

Game theory basics

Game theory

Two or more players
For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

Game theory

Two or more players
For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

[^0]
Game theory

Two or more players
For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

Blue player strategies

Rock

Red player strategies

Game theory

Two or more players
For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

Blue player strategies

Game theory

Two or more players
For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

Blue player strategies

Game theory

Two or more players
For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

Blue player strategies

Game theory

Two or more players
For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

Blue player strategies

Game theory

Two or more players
For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

Blue player strategies

Game theory

Two or more players
For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

Blue player strategies

Game theory

Two or more players
For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

Blue player strategies

Game theory

Two or more players
For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

Blue player strategies

Game theory

Two or more players
For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

Blue player strategies

Game theory

Two or more players
For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

Blue player strategies

Game theory

Two or more players
For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

Blue player strategies

Game theory

Two or more players
For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

Blue player strategies

Game theory

Two or more players
For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

Blue player strategies

Game theory

Two or more players
For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

Blue player strategies

(Pure) Nash equilibrium

A chosen strategy for each
player such that no player can improve its utility by changing its strategy

Can you find a Nash equilibrium in R-P-S?

(Pure) Nash equilibrium

A chosen strategy for each player such that no player can improve its utility by changing its strategy

Can you find a Nash equilibrium in R-P-S?

Blue player strategies

(Pure) Nash equilibrium

A chosen strategy for each player such that no player can improve its utility by changing its strategy

Can you find a Nash equilibrium in R-P-S?

Blue player strategies

(Pure) Nash equilibrium

A chosen strategy for each player such that no player can improve its utility by changing its strategy

Can you find a Nash equilibrium in R-P-S?

Blue player strategies

(Pure) Nash equilibrium

A chosen strategy for each player such that no player can improve its utility by changing its strategy

Can you find a Nash equilibrium in R-P-S?

Blue player strategies

(Pure) Nash equilibrium

A chosen strategy for each player such that no player can improve its utility by changing its strategy

Can you find a Nash equilibrium in R-P-S?

Blue player strategies

(Pure) Nash equilibrium

A chosen strategy for each player such that no player can improve its utility by changing its strategy

Can you find a Nash equilibrium in R-P-S?

Blue player strategies

Prisoner's dilemma

Red prisoner
Blue prisoner

Cooperate
Defect

Prisoner's dilemma

Prisoner's dilemma

Prisoner's dilemma

Prisoner's dilemma

Prisoner's dilemma

Prisoner's dilemma

Prisoner's dilemma

Prisoner's dilemma

Prisoner's dilemma

Prisoner's dilemma

Prisoner's dilemma

Price of Anarchy

[C. Papadimitriou,"Algorithms, games and the Internet", STOC 200I]

Price of Anarchy

[C. Papadimitriou, "Algorithms, games and the Internet", STOC 200I]

Price of anarchy $=\frac{\text { worst } \text { Nash equilibrium's total cost }}{\text { optimal total cost }}$

Price of Anarchy

[C. Papadimitriou, "Algorithms, games and the Internet", STOC 200I]

Price of anarchy $=\underline{\text { worst Nash equilibrium's total cost }}$ optimal total cost

Price of Anarchy

[C. Papadimitriou, "Algorithms, games and the Internet", STOC 200I]

Price of anarchy $=\frac{\text { worst Nash equilibrium's total cost }}{}$

Price of Anarchy

[C. Papadimitriou, "Algorithms, games and the Internet", STOC 200I]

Price of anarchy $=\frac{\text { worst } \text { Nash equilibrium's total cost }}{}$

Price of Anarchy

[C. Papadimitriou, "Algorithms, games and the Internet", STOC 200I]

How bad is selfish routing in a network?

The selfish routing game

\square

The selfish routing game

Given graph, latency function on each edge specifying latency as function of total flow x on a link

The selfish routing game

Given graph, latency function on each edge specifying latency as function of total flow x on a link

Path latency $=$ sum of link latencies

The selfish routing game

Given graph, latency function on each edge specifying latency as function of total flow x on a link

Path latency $=$ sum of link latencies
Player strategy: pick a path on which to route

The selfish routing game

Given graph, latency function on each edge specifying latency as function of total flow x on a link

Path latency $=$ sum of link latencies
Player strategy: pick a path on which to route

Players selfishly pick paths with lowest latency

The selfish routing game

Given graph, latency function on each edge specifying latency as function of total flow x on a link

Path latency $=$ sum of link latencies
Player strategy: pick a path on which to route

Players selfishly pick paths with lowest latency

For now assume many users, each with negligible load; total 1

The selfish routing game

Given graph, latency function on each edge specifying latency as function of total flow x on a link

Path latency $=$ sum of link latencies
Player strategy: pick a path on which to route

Players selfishly pick paths with lowest latency

For now assume many users, each with negligible load; total 1

The selfish routing game

Given graph, latency function on each edge specifying latency as function of total flow x on a link

Path latency $=$ sum of link latencies
Player strategy: pick a path on which to route

Players selfishly pick paths with lowest latency

For now assume many users, each with negligible load; total 1

Flow $x=0.5$ on each path; Total latency $=1.5$

Example: Braess's paradox

[Dietrich Braess, 1968]

Fig la: D. Braess.

Example: Braess's paradox

[Dietrich Braess, 1968]

Example: Braess's paradox

[Dietrich Braess, 1968]

Fig Ib: N. Dynamite.

Fig la: D. Braess.

Example: Braess's paradox

[Dietrich Braess, 1968]

Fig la: D. Braess.

Example: Braess's paradox

[Dietrich Braess, 1968]

Fig la: D. Braess.

Example: Braess's paradox

[Dietrich Braess, 1968]

Fig Ia: D. Braess.

Example: Braess's paradox

[Dietrich Braess, 1968]

Fig la: D. Braess.

Initially: 0.5 flow along each path; latency I+0.5 = I.5

Example: Braess's paradox

[Dietrich Braess, 1968]

Fig la: D. Braess.

Initially: 0.5 flow along each path; latency I+0.5 = I.5

Example: Braess's paradox

[Dietrich Braess, 1968]

Fig la: D. Braess.

Initially: 0.5 flow along each path; latency I+0.5 = I.5

Example: Braess's paradox

[Dietrich Braess, 1968]

Green path is better. Everyone switches to it!

Fig la: D. Braess.

Initially: 0.5 flow along each path; latency I+0.5 = I.5

Example: Braess's paradox

[Dietrich Braess, 1968]

Green path is better.

Fig I a: D. Braess. Everyone switches to it!

Initially: 0.5 flow along each path; latency I+0.5 = I.5
With new link: all flow along new path; latency $=2$

Example: Braess's paradox

Optimal latency $=1.5$

Example: Braess's paradox

Optimal latency $=1.5$

Nash equilibrium latency $=2$

Example: Braess's paradox

Optimal latency $=1.5$

Nash equilibrium latency $=2$

Thus, price of anarchy $=4 / 3$

From links to springs

From links to springs

From links to springs

From links to springs

From links to springs

From links to springs

Going deeper

Going deeper

How bad are equilibria in real-world networks?

Going deeper

How bad are equilibria in real-world networks?
Can you design a mechanism (a game) so that selfishness is not so bad?

Going broader

Going broader

Game theory used in networking to model

Going broader

Game theory used in networking to model

- Equilibria of distributed algorithms

Going broader

Game theory used in networking to model

- Equilibria of distributed algorithms
- ISPs competing with each other

Going broader

Game theory used in networking to model

- Equilibria of distributed algorithms
- ISPs competing with each other
- Spread of new technology in social networks

Going broader

Game theory used in networking to model

- Equilibria of distributed algorithms
- ISPs competing with each other
- Spread of new technology in social networks

Going broader

Game theory used in networking to model

- Equilibria of distributed algorithms
- ISPs competing with each other
- Spread of new technology in social networks

Many more applications of game theory to CS (and CS to game theory).

Going broader

Game theory used in networking to model

- Equilibria of distributed algorithms
- ISPs competing with each other
- Spread of new technology in social networks

Many more applications of game theory to CS (and CS to game theory).

- See Nisan, Roughgarden, Tardos,Vazirani's book Algorithmic Game Theory, available free online

[^0]: Red player strategies

