Networks and Games

Brighten Godfrey Discover Engineering CS Camp July 24, 2012

slides ©2010-2012 by Brighten Godfrey unless otherwise noted

Demo

IPv4 & IPv6 INTERNET TOPOLOGY MAP JANUARY 2009

Games & networks: a natural fit

Game theory

Studies interaction between selfish agents

Game theory

Studies interaction between selfish agents Networking Enables interaction between agents

Game theory

Studies interaction between selfish agents

Networking Enables interaction between agents

Networks make games happen!

Game theory basics

For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

Red player strategies

For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

Red player strategies

For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

Red player strategies

For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

Red player strategies

Rock	Paper	Scissors
------	-------	----------

For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

Red player strategies

For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

strategies Javer

		Rock	Paper	Scissors
מורצורא	Rock	\$0, \$0		

For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

Υ

		Rock	Paper	Scissors
ategies	Rock	\$0, \$0	\$0, \$ 	
ayer str				
ed pay				

For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

Red player strategies

		Rock	Paper	Scissors
מרכצובא	Rock	\$0, \$0	\$0, \$ 	\$,\$0

For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

Re

		Rock	Paper	Scissors
ategies	Rock	\$0, \$0	\$0, \$ 	\$,\$0
iyer str	Paper	\$1,\$0		

For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

Red p

		Rock	Paper	Scissors
ategies	Rock	\$0, \$0	\$0, \$ 	\$,\$0
iyer str	Paper	\$1,\$0	\$0, \$0	

For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

Red p

		Rock	Paper	Scissors
ategles	Rock	\$0, \$0	\$0, \$ 	\$,\$0
iyer str	Paper	\$1,\$0	\$0, \$0	\$0, \$1

For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

		Rock	Paper	Scissors
aregies	Rock	\$0, \$0	\$0, \$ 	\$,\$0
iyer su	Paper	\$1,\$0	\$0, \$0	\$0, \$1
eid nav	Scissors			

For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

		Rock	Paper	Scissors
ategies	Rock	\$0, \$0	\$0, \$1	\$1,\$0
ayer str	Paper	\$1,\$0	\$0, \$0	\$0, \$
Red pla	Scissors	\$0, \$ 		

For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

		Rock	Paper	Scissors
ategies	Rock	\$0, \$0	\$0, \$1	\$,\$0
ayer str	Paper	\$1,\$0	\$0, \$0	\$0, \$1
Red pla	Scissors	\$0, \$ 	\$1,\$0	

For each player, a set of strategies

For each combination of played strategies, a payoff or utility for each player

		Rock	Paper	Scissors
ategies	Rock	\$0, \$0	\$0, \$ 	\$1,\$0
iyer str	Paper	\$1,\$0	\$0, \$0	\$0, \$
Ked pla	Scissors	\$0, \$ 	\$1,\$0	\$0, \$0

A chosen strategy for each player such that no player can improve its utility by changing its strategy

Can you find a Nash equilibrium in R-P-S?

A chosen strategy for each player such that no player can improve its utility by changing its strategy

Can you find a Nash equilibrium in R-P-S?

		Rock	Paper	Scissors
ategies	Rock	\$0, \$0	\$0, \$ 	\$1,\$0
iyer str	Paper	\$1,\$0	\$0, \$0	\$0, \$1
Red pla	Scissors	\$0, \$1	\$1,\$0	\$0, \$0

A chosen strategy for each player such that no player can improve its utility by changing its strategy

Can you find a Nash equilibrium in R-P-S?

		Rock	Paper	Scissors
Red player strategies	Rock	\$0, \$0	\$0, \$ 	\$,\$0
	Paper	¥ \$I,\$0	\$0, \$0	\$0, \$
	Scissors	\$0, \$1	\$1,\$0	\$0, \$0

A chosen strategy for each player such that no player can improve its utility by changing its strategy

Can you find a Nash equilibrium in R-P-S?

A chosen strategy for each player such that no player can improve its utility by changing its strategy

Can you find a Nash equilibrium in R-P-S?

A chosen strategy for each player such that no player can improve its utility by changing its strategy

A chosen strategy for each player such that no player can improve its utility by changing its strategy

Can you find a Nash equilibrium in R-P-S? Blue player strategies Rock Paper **Scissors** Red player strategies \$0, \$0 **\$0, \$1 \$1,\$0** Rock **\$1,\$0** \$0, \$0 **\$0, \$** Paper **\$0, \$ \$1,\$0** Scissors \$0, \$0 No pure Nash

. equilibrium!

Cooperate Defect

Red prisoner

Red prisoner

Defect

0, -12

-5, -5

[C. Papadimitriou, "Algorithms, games and the Internet", STOC 2001]

[C. Papadimitriou, "Algorithms, games and the Internet", STOC 2001]

Price of anarchy = <u>worst Nash equilibrium's total cost</u> optimal total cost

[C. Papadimitriou, "Algorithms, games and the Internet", STOC 2001]

Price of anarchy = <u>worst Nash equilibrium's total cost</u> optimal total cost

Blue prisonerCooperateDefectCooperate-1, -1-12, 0Defect0, -12-5, -5

[C. Papadimitriou, "Algorithms, games and the Internet", STOC 2001]

Price of anarchy = <u>worst Nash equilibrium's total cost</u> \ optimal total cost

[C. Papadimitriou, "Algorithms, games and the Internet", STOC 2001]

Price of anarchy = worst Nash equilibrium's total cost optimal total cost Blue prisoner Cooperate -1,-1 -12,0 Defect 0,-12 -5,-5

[C. Papadimitriou, "Algorithms, games and the Internet", STOC 2001]

How bad is selfish routing in a network?

The selfish routing game

The selfish routing game

Given graph, latency function on each edge specifying latency as function of total flow x on a link

Path latency = sum of link latencies

Path latency = sum of link latencies

Player strategy: pick a path on which to route

Path latency = sum of link latencies

Player strategy: pick a path on which to route

Players selfishly pick paths with lowest latency

Path latency = sum of link latencies

Player strategy: pick a path on which to route

Players selfishly pick paths with lowest latency

For now assume many users, each with negligible load; total 1

Path latency = sum of link latencies

Player strategy: pick a path on which to route

Players selfishly pick paths with lowest latency

For now assume many users, each with negligible load; total 1

Path latency = sum of link latencies

Player strategy: pick a path on which to route

Players selfishly pick paths with lowest latency

For now assume many users, each with negligible load; total 1

Flow x = 0.5 on each path; Total latency = 1.5

[Dietrich Braess, 1968]

[Dietrich Braess, 1968]

Fig Ib: N. Dynamite.

[Dietrich Braess, 1968]

[Dietrich Braess, 1968]

[Dietrich Braess, 1968]

[Dietrich Braess, 1968]

[Dietrich Braess, 1968]

Fig I a: D. Braess.

[Dietrich Braess, 1968]

Fig I a: D. Braess.

[Dietrich Braess, 1968]

Fig I a: D. Braess.

[Dietrich Braess, 1968]

Green path is better. Everyone switches to it! Fig I a: D. Braess.

[Dietrich Braess, 1968]

Fig I a: D. Braess.

Green path is better. Everyone switches to it!

Initially: 0.5 flow along each path; latency 1+0.5 = 1.5

With new link: all flow along new path; latency = 2

Optimal latency = 1.5
Example: Braess's paradox

Optimal latency = 1.5

Nash equilibrium latency = 2

Example: Braess's paradox

Optimal latency = 1.5

Nash equilibrium latency = 2

Thus, price of anarchy = 4/3

Going deeper

Going deeper

How bad are equilibria in real-world networks?

How bad are equilibria in real-world networks?

Can you design a mechanism (a game) so that selfishness is not so bad?

Going broader

• Equilibria of distributed algorithms

- Equilibria of distributed algorithms
- ISPs competing with each other

- Equilibria of distributed algorithms
- ISPs competing with each other
- Spread of new technology in social networks

- Equilibria of distributed algorithms
- ISPs competing with each other
- Spread of new technology in social networks

- Equilibria of distributed algorithms
- ISPs competing with each other
- Spread of new technology in social networks

• .

Many more applications of game theory to CS (and CS to game theory).

- Equilibria of distributed algorithms
- ISPs competing with each other
- Spread of new technology in social networks

• .

Many more applications of game theory to CS (and CS to game theory).

• See Nisan, Roughgarden, Tardos, Vazirani's book Algorithmic Game Theory, available free online