
Brief Announcement: A Simple Stretch 2 Distance Oracle
∗

Rachit Agarwal P. Brighten Godfrey

University of Illinois at Urbana-Champaign, IL, USA
{agarwa16, pbg}@illinois.edu

ABSTRACT

We present a distance oracle that, for weighted graphs with n

vertices and m edges, is of size 8n4/3m1/3 log2/3 n and returns

stretch-2 distances in constant time. Our oracle achieves bounds

identical to the constant-time stretch-2 oracle of Pǎtraşcu and

Roditty, but admits significantly simpler construction and proofs.

Categories and Subject Descriptors

E.1 [Data Structures]: Graphs and Networks; G.2.2 [Discrete

Mathematics]: Graph Theory—graph algorithms

General Terms

ALgorithms, Theory

Keywords

Approximate distance oracles, distance queries

1. INTRODUCTION
A distance oracle is a compact representation of the all-pairs

shortest path matrix of a graph. To achieve a compact (that

is, subquadratic in number of vertices) representation, we allow

approximation measured in terms of stretch. A stretch-c oracle

returns, for any pair of vertices at distance d, a distance estimate

of at most c · d; corresponding path can be retrieved in constant

time per hop. Distance oracles have a wide range of applications

including compact routing [1,5,9] and quickly computing paths

on large networks [1, 3, 10]. For general weighted graphs, Tho-

rup and Zwick [10] designed an oracle of size O(n3/2) that re-

turns distances of stretch 3 in constant time. Furthermore, they

showed that this oracle is optimal in the worst case — there exist

graphs for which any oracle that returns distances of stretch 3

requires space Ω(n3/2) and that returns distances of stretch less

than 3 requires space Ω(n2).

∗This work was supported by National Science Foundation grant
CNS 1017069.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PODC’13, July 22–24, 2013, Montréal, Québec, Canada.
ACM 978-1-4503-2065-8/13/07.

However, the graphs that constitute the hard cases for stretch

less than 3 are extremely dense, while essentially all real-world

graphs are sparse. For oracles that improve upon the Thorup-

Zwick oracle by exploiting graph sparsity, new upper bounds

[1, 2, 4–7] and lower bounds [8] have recently been derived.

In particular, Pǎtraşcu and Roditty [6] designed a constant-time

stretch-2 oracle of size O(n4/3m1/3) for weighted graphs; their

construction was extended for larger stretch values for unweigh-

ted [1] and for weighted graphs [7]. In fact, a more general

space-stretch-time trade-off can be achieved [2,4,5] by exploit-

ing graph sparsity; this further reduces the space requirements

for stretch 2 and larger [5] and even allows computing distances

of stretch less than 2 [2,4].

A particularly interesting result among the aforementioned is

that of Pǎtraşcu and Roditty [6] — a stretch-2 constant-time

oracle of size O(n4/3m1/3). However, their construction uses

substantially more complex techniques than oracles for dense

graphs and oracles with super-constant query time. For weighted

graphs, their algorithm for constructing the oracle is particularly

complex — it first samples a set of edges A and a set of vertices

B (each with a different probability); it then constructs partial

shortest path trees around each vertex in B with a stopping cri-

teria that depends on edges in set A. Finally, the algorithm con-

structs partial shortest path trees around each remaining vertex

with a new stopping criteria that depends on edges in set A, ver-

tices in set B and the edges explored while constructing partial

shortest path trees around vertices in set B.

We present a new constant-time stretch-2 oracle for weighted

graphs that admits significantly simpler construction and proofs.

Our algorithm requires sampling a set A of vertices and con-

structing partial shortest path trees around each vertex using a

single stopping criteria that depends only on vertices in set A:

THEOREM 1. Given a weighted undirected graph with n vertices

and m edges with non-negative edge weights, there exists a distance

oracle of expected size 8n4/3m1/3 log2/3 n that returns a stretch-2

distance in constant time.

Our construction uses the notion of balls used in [10] and

of vicinities used in [2, 4, 5]. We say that a pair of vertices

have a ball-vicinity intersection if the ball of one vertex has

a non-empty intersection with the vicinity of the other vertex.

To bound the space requirements, we exploit graph sparsity to

prove a non-trivial upper bound on the number of vertex pairs

with ball-vicinity intersection; this requires a special ball con-

struction algorithm previously used in design of compact rout-

ing schemes [9]. Furthermore, to bound the stretch, we show

that for any pair of vertices with non-intersecting ball-vicinity, a

stretch-2 distance can be computed by storing a small amount

of information per vertex in the graph.

2. PRELIMINARIES
We assume that G = (V, E) is a weighted undirected graph

with n vertices and m edges with non-negative edge weights.

Let d(s, t) denote the shortest distance between a pair of vertices

s, t ∈ V . For any subset of vertices V ′ ⊂ V , we denote by N(V ′)

the set of neighbors of vertices in V ′. Given a vertex v and a

subset of vertices L ⊂ V , we let the nearest vertex in set L,

denoted by ℓ(v), be the vertex a ∈ L that minimizes d(v, a), ties

broken arbitrarily. The ball radius of v, denoted by rv , is the

distance between v and ℓ(v).

Balls and Vicinities, Inverse-balls and Inverse-Vicinities. We

will also need the following definitions:

• Ball of a vertex B(v): the set of vertices w ∈ V for which

d(v, w)< rv;

• Inverse-Ball of a vertex B̄(v): the set of vertices that con-

tain v in their ball;

• Vicinity of a vertex B+(v): the set of vertices in B(v) ∪

N(B(v));

• Inverse-vicinity of a vertex B̄+(v): the set of vertices that

contain v in their vicinity.

Our construction of balls, vicinities, inverse-balls and inverse-

vicinities will use the following result:

LEMMA 2. [2, 9] For any weighted undirected graph and for

any 1 ≤ α ≤ n, there exists a subset of vertices L of expected size

8n log n/α such that |B̄(v)| ≤ α and |B̄+(v)| ≤ αdeg(v) for each

vertex v in the graph.

The first part of the lemma that shows the existence of a set L to

bound the size of the inverse-ball of each vertex is due to Tho-

rup and Zwick [9]; for sake of completeness, the algorithm for

constructing such a set L is informally described in Appendix A.

It is easy to verify that the set of vertices in the inverse-vicinity of

any vertex v is given by B̄+(v) =
⋃

w∈N (v)
B̄(w); this leads to the

bound on the size of the inverse-vicinity of each vertex (using

the same set L). We emphasize that the above lemma bounds

the size of set L in expectation, while the size of inverse-ball and

inverse-vicinity for any vertex is bounded deterministically.

3. DISTANCE ORACLE
Our construction of the oracle begins by creating a set L of

vertices using the result of Lemma 2 (the value of α will be

specified later). The oracle stores, for each v ∈ V :

• a hash table storing the exact distance to each vertex in L;

• the nearest vertex ℓ(v) and the ball radius rv; and

• a hash table storing the exact distance to each vertex in

the set Sv = {w : B(v) ∩ B+(w) 6= ;}, that is, to each

vertex w whose vicinity intersects with the ball of v.

Query algorithm. When queried for the distance between

vertices s, t ∈ V , the algorithm returns the exact distance if s ∈ St

or if t ∈ Ss. Else, the algorithm returns d(s,ℓ(s))+ d(t ,ℓ(s)) if

rs ≤ rt and d(t ,ℓ(t))+ d(s,ℓ(t)) otherwise.

3.1 Proof of Theorem 1
The proof borrows two ideas from [2]. The first is used to

bound the size of the oracle — intuitively, if each vertex has

a small size inverse-ball (or equivalently, is contained in a few

balls) as guaranteed by Lemma 2, then the number of vertex

pairs with ball-vicinity intersection is also small, thereby bound-

ing
∑

v
|Sv |. The second is used to bound the stretch — any

pair of vertices s, t with non-intersecting ball-vicinity must be

rather far away and either the path s ℓ(s) t or the path

t ℓ(t) s must be a stretch-2 path.

LEMMA 3. Let G = (V, E) be a weighted undirected graph with

n vertices and m edges. For any fixed 1 ≤ α ≤ n, if the oracle is

constructed as above, then:
∑

v∈V
|Sv | ≤ 2α2m.

Proof: For any vertex w ∈ V , let γ(w) be the number of ver-

tex pairs whose ball-vicinity intersection contains w; that is,

γ(w) = |{(u, v) : w ∈ B(u) ∩ B+(v)}|. Then, by definition, we

get that
∑

v∈V
|Sv | ≤
∑

w∈V
γ(w). Recall, using Lemma 2, each

vertex w (deterministically) belongs to at most α balls and at

most αdeg(w) vicinities. Hence, the number of ball-vicinity in-

tersections that can occur at w is bounded by γ(w)≤ α2 deg(w).

Hence,
∑

v∈V
|Sv | ≤
∑

w∈V
γ(w)≤ 2α2m. �

LEMMA 4. [2] Let G = (V, E) be a weighted undirected graph.

For any pair of vertices s, t ∈ V , if B(s) ∩ B+(t) = ;, then the

shortest distance is lower bounded as d(s, t)≥ rs + rt .

Proof: Let P = (s, x1, x2, . . . , t) be the shortest path between s

and t . Let i0 = max{i|x i ∈ P ∩ B(s)}, w = x i0
and w′ = x i0+1.

Since w′ /∈ B(s), we get that d(s, w′)≥ rs. Since B(s)∩B+(t) = ;,

we have that w /∈ B+(t) and hence, w′ /∈ B(t) leading to the fact

that d(t , w′)≥ rt . Finally, w′ being on the shortest path between

s and t , we have that d(s, t) = d(s, w′) + d(t , w′)≥ rs + rt . �

Proof of Theorem 1. We first bound the size of the oracle.

Using Lemma 2, the expected size of set L is 8n log n/α; and,

using Lemma 3, the size of set
∑

v∈V
|Sv | is bounded by 2α2m.

Hence, the oracle’s size is bounded by 8n2 log n/α+ 2α2m; this

expression is minimized for α = 2n2/3m−1/3 log1/3(n), leading to

the desired bound.

Next, we show that the query algorithm returns a distance

of at most 2d(s, t). If B(s) ∩ B+(t) 6= ;, the algorithm returns

the exact distance. For the case when B(s) ∩ B+(t) = ;, as-

sume, without loss of generality, that rs ≤ rt . Then, using

Lemma 4, d(s, t) ≥ 2rs ; or equivalently, 2rs ≤ d(s, t). The dis-

tance returned by the query algorithm is d(s,ℓ(s))+ d(t ,ℓ(s)),
which using triangle inequality, is at most 2d(s,ℓ(s))+ d(s, t) =

2rs + d(s, t)≤ 2d(s, t), as claimed. �

For the special case of unweighted graphs, it is possible to reduce

the space requirements at the cost of a small additive stretch.

Pǎtraşcu and Roditty [6] designed a constant time oracle of size

O(n5/3) for unweighted graphs that, for any pair of vertices at

distance d, returns a path of length at most 2d + 1. Using ideas

similar to above, we get a simplified construction for the case of

unweighted graphs as well (see Appendix B).

4. REFERENCES
[1] I. Abraham and C. Gavoille. On approximate distance

labels and routing schemes with affine stretch. In

International Symposium on Distributed Computing

(DISC), pages 404–415, 2011.

[2] R. Agarwal. Distance oracles with super-constant query

time, Technical report, 2013.

[3] R. Agarwal, M. Caesar, P. B. Godfrey, and B. Y. Zhao.

Shortest paths in less than a millisecond. In ACM

SIGCOMM Workshop on Online Social Networks (WOSN),

2012.

[4] R. Agarwal and P. B. Godfrey. Distance oracles for stretch

less than 2. In ACM-SIAM Symposium on Discrete

Algorithms (SODA), 2013.

[5] R. Agarwal, P. B. Godfrey, and S. Har-Peled. Approximate

distance queries and compact routing in sparse graphs. In

Proc. IEEE Conference on Computer Communications

(INFOCOM), pages 1754–1762, 2011.

[6] M. Pǎtraşcu and L. Roditty. Distance oracles beyond the

Thorup-Zwick bound. In Proc. IEEE Annual Symposium on

Foundations of Computer Science (FOCS), pages 815–823,

2010.

[7] M. Pǎtraşcu, L. Roditty, and M. Thorup. A new infinity of

distance oracles for sparse graphs. In IEEE Symposium on

Foundations of Computer Science (FOCS), 2012.

[8] C. Sommer, E. Verbin, and W. Yu. Distance oracles for

sparse graphs. In Proc. IEEE Annual Symposium on

Foundations of Computer Science (FOCS), pages 703–712,

2009.

[9] M. Thorup and U. Zwick. Compact routing schemes. In

Proc. ACM Symposium on Parallel Algorithms and

Architectures (SPAA), pages 1–10, 2001.

[10] M. Thorup and U. Zwick. Approximate distance oracles.

Journal of the ACM, 52(1):1–24, January 2005.

APPENDIX

A. INFORMAL PROOF OF LEMMA 2
Fix some 1 ≤ α ≤ n. The algorithm maintains two set of ver-

tices — a set L that constitutes the final output of the algorithm

and another set W that contains all vertices that have inverse-

ball of size more than α. The set L is initialized to an empty set

and W is initialized to the vertex set V . The algorithm runs in

multiple iterations; in each iteration, it uniform randomly sam-

ples 4n/α vertices from W , inserts them to set L; re-computes

the inverse-ball of each vertex and updates W to all vertices that

still contains more than α vertices in their inverse-ball. The al-

gorithm terminates when W contains 4n/α or fewer vertices; in

this case, all vertices in W are inserted in set L.

The main idea behind the proof of correctness is as follows.

Clearly, by construction, each vertex has inverse-ball of size at

most α. The main challenge is to bound the size of set L. It is

shown in [9] that the expected number of iterations performed

by the algorithm before termination is at most 2 log n; since

4n/α vertices are added to L in each iteration, the size of the

set L output by the algorithm is at most 8n log n/α.

B. UNWEIGHTED GRAPHS
A stretch-(c, c′) oracle for unweighted graphs returns, for any

pair of vertices at distance d, a path of length at most c · d + c′.

Pǎtraşcu and Roditty [6] designed a constant-time stretch-(2, 1)

oracle of size O(n5/3) for general unweighted graphs. Using

ideas similar to those for weighted graphs, we get a simpler con-

struction for the case of unweighted graphs as well:

THEOREM 5. Given a unweighted undirected graph with n ver-

tices and m edges, there exists a distance oracle of expected size

4n5/3 log2/3 n that returns a stretch-(2, 1) distance in constant time.

Abraham and Gavoille [1] presented a similar construction

and further generalized it for larger stretch values. Due to the

focus on small stretch values, our exposition is slightly simpler

than their. The construction and proofs for the following oracle

is similar to that for weighted graphs with the only difference

that it now suffices to consider ball-ball intersections rather than

ball-vicinity intersections.

B.1 Distance oracle
Our construction of the oracle begins by creating a set L of

vertices using the result of Lemma 2 (the value of α will be

specified later). The oracle stores, for each v ∈ V :

• a hash table storing the exact distance to each vertex in L;

• the nearest vertex ℓ(v) and the ball radius rv; and

• a hash table storing the exact distance to each vertex in the

set Sv = {w : B(v) ∩ B(w) 6= ;}, that is, to each vertex w

whose ball intersects with the ball of v.

Query algorithm. When queried for the distance between

vertices s, t ∈ V , the algorithm returns the exact distance if s ∈ St

or if t ∈ Ss. Else, the algorithm returns d(s,ℓ(s))+ d(t ,ℓ(s)) if

rs ≤ rt and d(t ,ℓ(t))+ d(s,ℓ(t)) otherwise.

B.2 Proof of Theorem 5
As with the proof of Theorem 1, this proof uses two ideas. The

first is used to bound the oracle’s size — we show that if each

vertex has a small size inverse-ball (or equivalently, is contained

in a few balls) as guaranteed by Lemma 2, then the number

of vertex pairs with ball-ball intersection is also small, thereby

bounding
∑

v
|Sv |. Second, we show that any pair of vertices

s, t with non-intersecting ball-ball must be rather far away and

either the path s ℓ(s) t or the path t ℓ(t) s must be a

stretch-(2, 1) path.

LEMMA 6. Let G = (V, E) be a unweighted undirected graph

with n vertices. For any fixed 1 ≤ α≤ n, if the oracle is constructed

as above, then:
∑

v∈V
|Sv | ≤ α

2n.

Proof: For any vertex w ∈ V , let γ(w) be the number of vertex

pairs whose ball-ball intersection contains w; that is, γ(w) =
|{(u, v) : w ∈ B(u) ∩ B(v)}|. Then, by definition, we get that∑

v∈V
|Sv | ≤
∑

w∈V
γ(w). Recall, using Lemma 2, each vertex

w (deterministically) belongs to at most α balls. Hence, the

number of ball-ball intersections that can occur at w is bounded

by α2; consequently, we have that for any vertex w ∈ V , γ(w)≤
α2. Hence,
∑

v∈V
|Sv | ≤
∑

w∈V
γ(w)≤ α2n. �

Proof of Theorem 5. We first bound the size of the oracle.

Using Lemma 2, the expected size of set L is 8n log n/α; and,

using Lemma 6, the size of set
∑

v∈V
|Sv | is bounded by α2n.

Hence, the size of the oracle is bounded by 8n2 log n/α+ α2n;

this expression is minimized for α = 2n1/3 log1/3(n), leading to

the desired bound.

Next, we show that the query algorithm returns a distance of

at most 2d(s, t) + 1. If B(s) ∩ B(t) 6= ;, the algorithm returns

the exact distance. For the case when B(s)∩ B(t) = ;, assume,

without loss of generality, that rs ≤ rt . Let P = (s, x1, x2, . . . , t)

be the shortest path between s and t . Let i0 = max{i|x i ∈ P ∩

B(s)}, w = x i0
and w′ = x i0+1. Since w′ /∈ B(s), we get that

d(s, w′) ≥ rs. Since B(s) ∩ B(t) = ;, we have that w /∈ B(t)

and hence, d(t , w) ≥ rt . Finally, w′ being on the shortest path

between s and t , we have that d(s, t) = d(s, w′) + d(t , w′) =

d(s, w′) + d(t , w)− 1 ≥ rs + rt − 1 ≥ 2rs − 1; or equivalently,

2rs ≤ d(s, t)+1. The distance returned by the query algorithm is

d(s,ℓ(s))+ d(t ,ℓ(s)), which using triangle inequality, is at most

2d(s,ℓ(s))+ d(s, t) = 2rs + d(s, t)≤ 2d(s, t)+ 1, as claimed. �

	Introduction
	Preliminaries
	Distance Oracle
	Proof of Theorem 1

	References
	Informal proof of Lemma 2
	Unweighted graphs
	Distance oracle
	Proof of Theorem 5

