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ABSTRACT

For interactive networked applications like web brows-
ing, every round-trip time (RTT) matters. We intro-
duce ASAP, a new naming and transport protocol that
reduces latency by shortcutting DNS requests and elim-
inating TCP’s three-way handshake, while ensuring the
key security property of verifiable provenance of client
requests. ASAP eliminates between one and two RTTs,
cutting the delay of small requests by up to two-thirds.

1. INTRODUCTION

Modern web sites are widely distributed applications
that make interactive procedure calls, in the form of web
requests, to servers around the world. User-perceived
latency is a key challenge for such applications, because
even relatively small delays cause user frustration, loss
of usability of web services, and loss of customers and
revenue [23,38,40,49]. A recent study by Google [16]
found that delays as small as 100 milliseconds measur-
ably reduced users’ frequency of conducting searches;
the effect increased over time, to a 0.74% drop after 4-6
weeks of a 400 ms delay, and persisted for weeks after
the artificial delay was eliminated. (To put this in per-
spective, 0.74% of Google’s search advertising revenue
was $188 million in 2010 [54].) As more services move
from the desktop to the cloud, delay stands to become
increasingly problematic.

Although end-to-end delay has numerous causes, one
important contributor is connection establishment over-
head. To see why, note that as of May 2010, the median-
size web page is 177 KB with all embedded resources,
and the median size of content located on a single host is
11.18 KB [2]. Downloading 11.18 KB from one server at
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the United States average connection speed (4.6 Mbps [9])
ideally requires 30.1 ms of bottleneck transmission time.
However, the client may first need to perform a Do-
main Name System (DNS) lookup, adding a variable
amount of delay; and must execute TCP’s three-way
handshake (3WH), adding one round trip time (RTT)
between client and server. Since RTTs are commonly
on the order of 50-100 ms [5] and the client may need
to initiate multiple TCP sessions in serial to download
the page, the overhead from DNS and TCP can account
for a significant fraction of the total delay. For example,
we found that when downloading index.html files from
the 100 most popular U.S. websites [1] over residential
cable,! the median latency caused by the 3WH was 72
ms, and by DNS was 101 ms.

This paper studies the following question: how can
transport protocols be designed to perform transactions
with delay as close as possible to a single RTT between
the endpoints? Moreover, we desire a design that is
deployable in today’s Internet. To achieve this goal,
we revisit the two core protocols involved in connection
establishment, DNS and TCP.

First, while DNS latency can be reduced with caching
or employing a distributed set of DNS servers reachable
via anycast, in many cases [33] the lookup will have to
visit an authoritative DNS server that is relatively dis-
tant. In this case, a simple technique can cut latency by
as much as one RTT: we piggyback the first transport
packet within the DNS query; it is then sent directly
to the destination rather than back to the client. Al-
though related DNS shortcutting techniques have been
proposed before [34], we show that it can be done with
modifications to only the client and the authoritative
DNS server, without requiring changes in the global
DNS infrastructure.

Second, we introduce a protocol which eliminates the
need for TCP’s 3WH, saving another RTT per connec-
tion. Since the 3WH performs important functions, this
requires careful protocol design. Most critically, the
3WH allows the server to verify the provenance (source
address) of a client’s request, to guard against denial of

110 queries for each site, from Champaign, IL.



service (DoS) attacks. Past approaches to eliminating
the 3WH have led to subtle security vulnerabilities. In
contrast, our design ensures verifiable provenance while
avoiding the need for a handshaking step on every con-
nection. A client obtains a certificate of provenance for
its current location, handshaking with multiple “prove-
nance verifiers” to limit eavesdropping attacks. The
client includes this certificate with future transport con-
nection requests. The server can then locally verify the
certificate and send a response without waiting for a
traditional handshake.

Our Accelerated Secure Association Protocol (ASAP)
combines these techniques to cut connection establish-
ment by between one and two RTTs compared with
DNS and TCP. This improvement can have significant
impact due to the ubiquity of connection establishment.

In summary, our contributions are as follows:

e ASAP is the first transport protocol that can com-
plete requests in a single RTT without exposing
significant DoS vulnerabilities.

e We show how up to one more RTT can be cut
from transport connection setup by shortcutting
DNS in a deployable manner.

e We implement and evaluate ASAP with wide-area
experiments and microbenchmarks, verifying that
ASAP offers significant improvement in latency
with limited computational overhead, and effec-
tively limits eavesdropping attacks.

2. FAST TRANSPORT CONNECTION
ESTABLISHMENT

In this section, we present ASAP’s core transport
connection establishment protocol, which eliminates the
3WH while guarding against DoS attacks. We begin by
revisiting the motivation for the 3WH.

2.1 The role of the three-way handshake

In TCP’s 3WH, the client sends the server a SYN
packet containing an initial sequence number (ISN); the
server acknowledges this with a SYN-ACK including its
own ISN; and the client ACKs the server’s ISN. The
client can then begin sending data (such as an HTTP
request). The 3WH thus adds one RTT of delay.?

There are two primary benefits of the 3SWH. We dis-
cuss each, and how they fit into ASAP’s design.

2.1.1 Idempotence

The 3WH was originally [53] designed to ensure a
form of idempotence: if a packet is retransmitted or du-
plicated in the network, it should not cause a connection

2The client can include data with the first SYN packet. But
if the server acts upon this data before receiving the client’s
ACK, then the functionality of the 3WH is nullified.

to be opened more than once. By challenging the client
to echo back a pseudorandom number (the ISN), the
3WH verifies that the client’s request is still current.

We argue that this transport-layer idempotence is
neither sufficient nor necessary for applications’ needs.
First, it is not sufficient by an end-to-end argument:
transport-layer idempotence does not ensure end-to-end
idempotence. If a higher-layer entity retries the request,
such as when a human clicks on a link twice after the
server appears to respond slowly, the transaction may
be executed twice. As a result, some web sites resort to
imploring the human user, “Do not click Submit twice!”

Second, transport-layer idempotence is not necessary:
an application that desires this property can simply per-
form a handshake at the higher layer. Moreover, many
applications do not need it. If a server delivers a web
page twice a very small fraction of the time, this is only
a slight inefficiency, rather than a correctness problem.

Therefore, we argue that the benefit of ensuring idem-
potence in a general-purpose transport protocol does
not justify its cost in added delay. ASAP will however
make idempotence violations unlikely (§2.2.4).

2.1.2 Denial of service protection

The 3WH also lets the server s test the provenance
of a client request from some source IP ¢. The fact that
the client is able to echo the server’s pseudorandom ISN,
is a reliable indicator that the client is located at c.

If the server completes requests without waiting for
the 3WH, two DoS vulnerabilities emerge. First, the
client could fabricate a large number of requests from
many spoofed IP addresses, making it difficult for the
server to filter requests from a single attacking client.
Second and more critically, the attacker could perform
reflection/amplification attacks [43]: it sends relatively
small requests with the source address set to a victim’s
address. The server then sends a larger amount of data
to the victim, thus amplifying the attacker’s power and
hiding the origin of the attack.?

One could hope that ISP networks perform egress
filtering to block source spoofing. However, security is
preserved only if all networks across the Internet choose
to perform filtering and do so without bugs. This ide-
alistic assumption is false in practice [11].

We conclude that the DoS protection afforded by the
3WH is highly valuable. The main goal of the rest of
this section is to develop a protocol to verify source
provenance without introducing an RTT delay.

2.2 Verifying provenance without a handshake

ASAP leverages cryptographic proof to verify the prove-
nance of client requests without requiring an RTT de-
lay on every connection. First, the client handshakes

3Even with a 3WH, an attacker can reflect a SYN-ACK
packet off a server, but no significant amplification occurs.



with a provenance verifier (PV) to obtain a prove-
nance certificate (PC). The PC corresponds to cryp-
tographic proof that the PV recently verified that the
client was reachable at a certain IP address. After ob-
taining this certificate once, the client can use it for
multiple requests to place cryptographic proof of prove-
nance in the request packet sent to servers, in a way
that avoids replay attacks.

This subsection presents our basic provenance veri-
fication protocol. Subsequently, we will deal with two
subtle problems: eavesdropping near the PV (§2.3) and
mobility (§2.4). Fortunately, those two refinements only
require changes to the process of obtaining a PC.

2.2.1 Choosing a Provenance Verifier

The PV may be any party trusted by the server. We
envision two common use cases.
First, the PV may simply be the web server itself, or a

PV run by its domain at a known location (pv.xyz.com).

The first time a client contacts a domain, it obtains
a PC from the PV prior to initiating the application-
level request to the server; thereafter, it can contact
the server directly. Thus, the first connection takes two
RTTs (as in TCP), and subsequent connections require
a single RTT. This technique will be highly effective for
domains that attract the same client frequently (even
if the specific server varies each time), such as popular
web sites or content distribution networks.

Second, one or more trusted third parties could run
PV services. The advantage is that a client can avoid
an RTT delay for each new server or domain. The dis-
advantage is that servers need to trust a third party.
But this is not unprecedented: certificate authorities
and root DNS servers are examples in today’s Internet.

The above two solutions can exist in parallel. If the
client uses a PV the server does not trust, ASAP falls
back to a 3WH and can use an appropriate PV for fu-
ture requests.

2.2.2 Obtaining a Provenance Certificate

The protocol by which a client obtains a PC is shown
in Fig. 1. Before beginning, the client and PV have each
generated a public/private key pair (Kgub / Ky, and
Kﬁb /K i,y Tespectively) using a cryptosystem such as
RSA. The client then sends a request to the PV:

{Kgulﬂ dc}

where d. is the duration for which the client requests
that the PC be valid. The PV replies with the PC:

PC = {Kgub,a/c,t, d}KPv

priv
Here a. is the source address of the client, ¢ is the time
PC becomes valid, and d is the length of time PC will
remain valid. The PV sets ¢ to be the current time,
and sets d to the minimum of d. and the PV’s internal
maximum time, perhaps 1 day (§2.4).

Provenance
Client 1. {Kpub . dc } Verifier

2. PC = {Kpub.ac,t,d}x>" |
priv WLM

3. meta,PC,RC,data

where

RC = {hash(meta,data),treq}K;riv
Web
Server

Figure 1: Key messages in the basic ASAP transport pro-
tocol. Obtaining a Provenance Certificate when acquiring a
certain IP address (messages 1 and 2); opening a transport

connection (message 3).

To verify provenance (§2.1.2), it is sufficient to use a
single UDP message: while it doesn’t prove to the PV
that the client can receive messages at a., the client can
only use the PC if it is able to receive it at a.. However,
the PV itself is somewhat better protected from DoS
by using TCP, especially with SYN cookies, since this
ensures that the PV checks for address spoofing before it
performs cryptographic functions (which are expensive
relative to sending a SYN-ACK).

2.2.3 Sending a request

Once the client ¢ has a current PC for its present
location, it can contact a server and include the PC in
its request in order to bypass the 3WH.

However, a naive implementation including only the
PC would allow anyone who obtains the PC (an eaves-
dropper or a malicious server that ¢ contacts) to use
it to induce any server to send data to ¢. To guard
against this attack, c also constructs a request certifi-
cate (RC) encrypted with its private key:

RC = {hash(meta, data), treq} ke, -

Here hash is a secure hash function, meta is the message
metadata (source and destination IP address and port,
protocol number, initial sequence number), data is the
application-level data (such as an HTTP request), and
treq is the time the client sends the request.

The client can now open a transport connection to
the server with a message of the form:

meta, PC, RC, data.

Upon receipt, the server verifies validity of the request.
To do this, the server must already know the public
key of each PV that it trusts. It determines whether
the PC is valid for one of these* by checking that it
decrypts correctly, the current time lies within [¢,¢ +

4We expect the number of trusted PVs to be small, but
to avoid iterating through each, the message could simply

include a short identifier for the relevant K ;’Zb.



d], and a, matches the source address. If so, it uses
the client’s public key K7, from PC to check that
RC' decrypts correctly, the hash value in RC matches
hash(meta, data), and the time t,..4 is recent, e.g., within
the last 5 minutes. (This timeout only needs to be
long enough to cover most clock inaccuracy, which is on
the order of hundreds of milliseconds on NTP-enabled
hosts, and packet transit time.)

If all these tests pass, then the request is accepted and
the connection proceeds as in TCP after the 3SWH: data
is passed to the application, and data (e.g., a web page)
may be sent immediately back to the client. Thus, the
client can receive results within a single RTT.

2.2.4  Errors and idempotence

In the protocol above, a number of errors can occur.
Clocks at the PV, client, or server could be out of sync
so that certificates are rejected, or the PV chosen by
the client may not be trusted by the server. In these
cases, we can simply fall back to a regular 3WH.

Another error case is sending of duplicate requests,
most commonly when the client retransmits after a time-
out. There are several cases. If the server has not re-
ceived the request yet (e.g., the first was dropped), then
it proceeds as in the protocol above. If the server has
already received the request and the connection is still
active, then it can realize this and simply ignore the
duplicate. If the server has already received the request
but the connection is closed, it may believe the request
is new, and pass the data to the application.

The last case violates idempotence (§2.1.1). It is un-
likely to occur in benign cases: closing the connection
requires receipt of a FIN packet from the client, which
it would only send after a retransmission of the original
request, and even after that the TCP stack enters the
TIME_WAIT state before finally clearing the connec-
tion after a timeout. However, the server may receive
the connection request after that due to a replay attack.
The server may choose to guard against such cases by
remembering hash values of recent requests. The server
needs to maintain this state only for the RC timeout
period (5 minutes as specified above).

2.3 Eavesdropping attacks and defense

Thus far, determining the validity of a client’s address
hinges on the client being able to receive messages at a
given address a. But in fact, this depends not only on
the client’s location, but also on from where the message
is sent. If an attacker can eavesdrop on any part of the
path PV ~» a, then it can obtain a PC for a. In the
same way, a client can induce a TCP server s to send
data to a if it can eavesdrop on any part of the path
s ~» a. Therefore, if the PV is colocated with the server,
ASAP’s security (in this sense) is equivalent to TCP’s.

But if a single PV is used by servers in many loca-

tions, the attack could be more damaging. Consider, for
example, a PV run by a globally-trusted third party.
An attacker who can eavesdrop on the PV’s network
providers can obtain PCs for any address, and these
PCs are valid at every server in the Internet!

To defend against this attack, we use the following
technique: the organization running the PV service places
PV servers in several diverse locations; the client must
successfully handshake with all of them to obtain a PC.
In this case, the attacker would need to eavesdrop on all
paths PVj ~» a, PV, ~ a, PV3 ~ a, traversing diverse
geographical locations. Intuitively, the attacker has ei-
ther compromised many networks or is in fact physi-
cally close to a. Note that this change only requires
modification of the protocol between the client and the
PV, with no changes to the PC format or interaction
between client and server.

But how many PVs are necessary, where should they
be placed, and how much (quantitatively) can the eaves-
dropping attack be limited? We give two answers to this
question.

First, in the Appendix, we prove that O(klogn) PVs
are sufficient (though perhaps not necessary) to defend
against an attacker that can eavesdrop on k nodes in an
n-node network, even if the attacker can choose those
nodes after knowing the PV locations. Specifically, we
show that for nearly all possible PV placements, for ev-
ery client ¢, either: (1) the attacker cannot impersonate
¢ in ASAP, or (2) the attacker might be able to imper-
sonate ¢ but even in TCP, the attacker could fool at
least half of the Internet into believing that it is c.

Second, in §5, we show that the situation is even bet-
ter in practice. In real-world networks, even with 2 PVs,
for the large majority of PV placements ASAP provides
better protection against a worst-case eavesdropping at-
tacker than TCP.

2.4 Dealing with mobility

In our basic protocol, PCs remain valid for a fixed
timeout, such as 1 day. The fixed timeout may be suit-
able for many applications. In some cases, however, a
client may be authorized to use a source IP for only
a short duration, perhaps because it is mobile, and we
may wish to bound the duration of invalid use of a PC.

Suppose a client is authorized to use an IP address
only for time period [t, ¢+ T]. The difficulty is that the
PV does not know T'. A simple approach would be to
pick a fixed PC timeout d. This results in a tradeoff: d
is short and the client has to contact the PV frequently
(T'/d times); or d is long and invalid use of the PC could
last arbitrarily longer than T'.

However, we can do much better with an adaptive ex-
piration time. The following protocol guarantees that
the duration of invalid use is < T 4 O(1) with only
logy, T — O(1) requests sent to the PV. The protocol



extends our basic client-to-PV protocol (again without
any changes to the PC format or client-to-server proto-
col). The first time the client contacts the PV, the PV
issues a certificate for a short duration dj, e.g., 30 min-
utes. Just before this PC expires, the client requests
another, with a refresh option where it includes its old
PC in the message to the PV. The PV verifies that
the old PC is valid and current, and if so, issues a PC
with duration twice that of the old PC. This is then
repeated, and guarantees that the client will be certi-
fied to use the address only during [¢,t 4+ max(2T), dy)]
with [logy(7T'/dg)] requests sent to the PV. In practice,
there would likely be a maximum duration as well (e.g.,
1 month). Note that the PV remains stateless.

2.5 Additional security properties

Replay attacks. Assuming the private keys and the
secure hash function are not compromised, an eaves-
dropper that has heard every message has few options
for replay attacks. Specifically, even knowing a PC for
a client, the attacker cannot create a novel valid RC.
It can only replay existing RCs for a limited amount of
time (e.g. 5 minutes, using the timeout above), which
can be filtered by the server (§2.2.4).

DoS attacks on servers. ASAP introduces crypto-
graphic overhead on servers, which could be exploited
to perform DoS attacks. The worst case would be that a
large number of hosts present valid PCs but invalid RCs
to the server. In our implementation (§4), the server
would be forced to perform one RSA 1024 verification,
and one RSA 512 verification before declaring the re-
quest to be invalid.

Although ASAP increases the amount of work the
attacker can force the server to do with a single packet,
this attack has an easy defense: if a server detects that it
is under attack and cannot handle the rate of requests,
it can simply fall back to standard TCP handshaking.
The attack thus only causes a single-RTT increase in
latency rather than a service outage; thus, the attack
may have limited value to attackers.

We also note ASAP’s extra computation overhead is
partially compensated for by slightly reduced resources:
(1) the server sends and receives one fewer packet than
in the 3WH, and (2) as in TCP with SYN cookies, it
avoids storing state for half-open connections. Finally,
ASAP’s computational overhead could be decreased in
future implementations with a faster cryptographic al-
gorithm, such as elliptic curve cryptography (ECC) [31].

Key compromise. If the client’s key K, ;, is com-
promised (e.g., if the client is infected with a bot) this
will expose only the client to DoS attacks. An attacker
can then impersonate the client and mount reflection
attacks, but only directed to the compromised client.
The more serious problem is if the PV’s keys are com-

promised. If the PV is run on a per-domain basis, it can

simply discard its old keys and create new ones. If the
PV is a trusted third party, servers that trusted it will
have to be made aware of the compromise and remove
the PV from their list of trusted PVs. Similar problems
are also encountered in web Certificate Authorities [47]
and similar solutions apply here.

Privacy. ASAP clients might be easily tracked across
requests and across locations, since each request in-
cludes the client’s public key. However, the client can
simply change its (arbitrary) public key when it changes
its IP address and obtains a new PC, thus providing pri-
vacy that is essentially equivalent to today.

3. FAST NAME RESOLUTION

To reduce delay, ASAP piggybacks transport connec-
tion establishment atop the DNS lookup process. The
intuition is that once the client’s request reaches a DNS
server that knows the web server’s IP address, forward-
ing the message directly will be faster than going via
the “triangle route” from the DNS to the client to the
server, which occurs today. In general, this shortcut-
ting will save up to 1 RTTs, depending on the location
of the DNS server that knows the server’s IP address.’

In realizing this idea, our key goal is deployability.
The procedure described here requires changes only at
resources under control of the client and the server in-
terested in using the protocol: the client, the server,
and the authoritative DNS server (ADNS).

3.1 Basic protocol

In ASAP (Figure 2b), if the client does not have the
server’s IP address, it first constructs a DNS query. In
the query, it inserts connection establishment informa-
tion C'I. Specifically, C1T is a sequence of bytes encoding
meta, PC, RC,data as described in §2.2.3. ASAP does
not modify the format of or add fields to the DNS query.
Instead, we encode the connection establishment infor-
mation into the hostname field of the DNS request, con-
catenated with the hostname being looked up. For ex-
ample, if the client is looking up www.xyz. com, it would
generate a DNS request for a.CI.www.xyz.com, where
a is an arbitrary character which will not appear in the
normal name (e.g., ASCII code 13), used by ASAP to
determine if the request is from an ASAP-enabled client
or a legacy client.

Since CT is unique, the local DNS (LDNS) will not
have the name cached, and will route the client’s query
towards the ADNS for xyz.com. The ADNS (which
supports ASAP) strips off the CT field and sends C1,
which carries the address of the client, spoofed by the
DNS server, to the server. The server then responds di-

5The Internet occasionally violates the triangle inequal-
ity [50]. This could either lessen or heighten ASAP’s benefit.
Our evaluation will show shortcutting offers significant im-
provement in practice.
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rectly back to the client with the requested object using
the ASAP transport protocol (§2). Since the LDNS is
still waiting for a response, the ADNS also returns an A
record mapping a.C'I.www.xyz.com to the web server’s
IP address. This response is given a small TTL since
caching it will be useless for future requests (as CT is
unique for each request).

While Extension Mechanisms for DNS (EDNSO0) [55]
enable the use of long names, to be compatible with
older DNS servers, the total size of the hostname field
in the query should remain below 253 bytes. In our
implementation meta, PC, RC' occupies a total of 212
bytes, leaving 41 bytes for the actual hostname and
application data. This would be enough space for re-
trieving HTTP objects that do not require long pa-
rameters from the client. Specifically, the server can
choose short hostnames and compressed pathnames for
web objects (i.e., a URL like www.xyz.com/bX4r could
be mapped by the web server to a longer pathname).
However, some HTTP requests may require long client-
specific parameters. At a minimum, the server will re-
ceive the first line of the HTTP request, which includes
the URL [28]; conceivably, servers can decide individu-
ally whether they have enough information to act on the
request (e.g. setting parameters to default values), or
must wait for more data. Moreover, cryptographic algo-
rithms using smaller key size for an equivalent amount
of security, such as ECC [31], could be leveraged to pro-
vide more room for the application data.

Making this scheme practical requires solving two
more problems below.

3.2 Handling DNS caching via multiple queries

Unfortunately, embedding CT into the requested host-
name presents problems for DNS caching, which DNS
uses to improve latency and scalability. In the basic pro-
tocol described above, ASAP prevents caching because
C1I, and thus the hostname, varies across every connec-
tion. If the client’s LDNS (where we are particularly
interested in caching) supports ASAP, then it can sim-
ply strip off CI from the name. However, in practice,

ASAP may not be supported at all LDNS servers.

To address this, ASAP clients also generate a second
DNS request (Figure 2(c)), for the original hostname
(www.xyz.com), to cause that hostname to be cached
at the LDNS. The cached entry can then be used by
ASAP clients (to avoid intermediate DNS lookups), as
well as non-ASAP clients (to directly lookup the remote
server). As an optimization, upon receiving a response
to the second DNS request, if the ASAP client has not
yet received a response from the server, the ASAP client
immediately sends its C'I request directly to the server’s
IP address. This can speed ASAP connections for cases
where the remote server’s IP address is locally cached.
Note that this optimization can cause multiple copies
of the request to reach the server; but this case is func-
tionally equivalent to the client retransmitting after a
timeout, which the ASAP server (like a TCP server)
must handle anyway, by ignoring the duplicate.

3.3 Reducing latency with server-side DNS

One remaining shortcoming of ASAP is that all queries
must traverse a single ADNS. This increases load on
the ADNS, and increases latency for sites that replicate
content across the wide area to place it near users.

To address this, ASAP embeds some DNS function-
ality into the web servers. In particular, each ASAP-
enabled server can run a Server DNS (SDNS), which
performs similar functionality to the ADNS but is co-
located with the server. When the ADNS is first queried,
it responds to the LDNS with an NS record mapping
www.xyz.com to the SDNS, and an A record mapping
the SDNS to the server’s IP address. Thereafter, the
LDNS will map requests of the form a.CI.www.xyz
.com directly to the SDNS, and thus to the server,
avoiding the ADNS.

The SDNS can be implemented as an extension to
the web server that decapsulates the ASAP query, to
avoid running an additional process. Also note that the
service provider can perform standard load balancing
and redirection by choosing which SDNS IP address to
return (e.g., one physically near the requesting client).



4. IMPLEMENTATION

Fast transport connection establishment: We
implemented two versions of ASAP’s transport layer.
First, we built an application-layer implementation us-
ing UDT (version 4.8) [8], a reliable and congestion
aware UDP-based transport protocol. We modified UDT
to implement our fast transport connection establish-
ment protocol (§2) by (a) adding a new connect interface
on the client side that, in addition to taking the socket
descriptor as input, also takes the domain name, certifi-
cates, and application data; (b) adding a new pre-fetch
interface on the server side, which lets the server begin
immediately transmitting data upon establishment of
the connection. For ASAP’s cryptographic operations,
we used SHA-256 for hash and 1024-bit RSA, as imple-
mented in OpenSSL [4] version 1.0.0c.

To compare more precisely to TCP, we built a second
implementation of ASAP within Linux kernel 2.6.38.4.
The client sends a special SYN message carrying con-
nection information and data; the server’s kernel vali-
dates provenance and passes the data to the application
immediately. Note that this special SYN is compliant
with TCP. By adding an ASAP option in the kernel and
setting it to true, the special SYN message is allowed to
have a data section, instead of only a header as in typ-
ical SYN messages. Since we could not directly make
use of OpenSSL in kernel space, and since no asymmet-
ric cryptographic algorithm is included in the standard
release of the Linux kernel, we ported and modified an
RSA patch [6] for Linux kernel 2.6.21, and incorporated
the cryptographic part of the design as a kernel module.

The fast transport connection implementation may
be run alone, or to further reduce delay, may be run
jointly with our fast name resolution implementation.
Fast name resolution: We implemented ASAP’s
fast name resolution as a set of extensions to the Un-
bound DNS server version 1.4.8. This code forms the
foundation for the ADNS and the SDNS operations. We
run unmodified Unbound as the LDNS and intermedi-
ate DNS servers in our experiments.

S. EVALUATION

We evaluated our implementation of ASAP in a Plan-
etLab deployment, a local deployment with emulated
latency, and microbenchmarks (§5.1). Overall, we find
that ASAP can reduce transmission time by up to two
round trips, significantly reducing latency of short web
traffic (§5.2). However, ASAP also has computational
overhead for cryptographic processing; we show this is
manageable (§5.3). Finally, we show that using just two
PVs effectively limits eavesdropping attacks (§5.4).

5.1 Methodology

We chose 24 representative PlanetLab nodes to act as

clients and servers: 18 domestic nodes (UIUC, UCLA,
UPenn and so on) and 6 international nodes (Brazil,
New Zealand, Japan, Singapore, Taiwan, Zurich). The
RTTs among these 24 nodes range from 3 ms to 440 ms.
Each client was assigned a LDNS, in the same site as
the client. Similarly, the server’s ADNS was placed at
another PlanetLab node located in the same site as the
server. We also tried placing the ADNS server on more
distant nodes to see how much influence this variation
causes to the performance of our design. Unless other-
wise mentioned, the client downloads 11.18KB of data,
the median size of data downloaded from per single host
per connection according to [2], during the connection.

We implemented the transport component of ASAP
as extensions to UDT. We compare against an unmodi-
fied implementation of UDT, and unmodified TCP. We
implemented the name resolution component of ASAP
as extensions to the Unbound DNS server, and use an
unmodified copy of Unbound as a baseline. We targeted
a design with low complexity, resulting in an implemen-
tation with relatively few lines of code (less than 3000
for name resolution, transport, client /server, and prove-
nance verification functions).

5.2 Latency reduction

In this section, we study the latency of ASAP. We
define the latency savings ratio (LSR) as the time it
takes ASAP to download an object divided by the time
it takes today’s Internet to download the object (using
UDT or TCP).

Overall latency: We first evaluate the complete
ASAP protocol. We consider two separate cases: (a)
the server’s IP is already cached on the LDNS, and (b)
the server’s IP is not cached, requiring a lookup to tra-
verse to the server’s ADNS. We achieve the first case
by sending an initial request to “warm up” the cache
before collecting results. For the first case (Figure 3a),
the latency savings ratio is similar to the transport-only
experiments. For the second case (Figure 3b), ASAP
can save up to two RTTs, resulting in more significant
latency reduction. Finally, since the ADNS may not
always be near the server, we perform an experiment
where we place the ADNS server at a random site (Fig-
ure 3c). We find that ASAP can still reduce latency in
this case: even if the ADNS and server are not colo-
cated, it is generally faster to go directly from ADNS
to server, rather than from ADNS to client to server.

Transport latency: To understand the benefits of
ASAP’s connection setup procedure, we microbench-
mark only its transport operations (including connec-
tion setup, requesting the web page, and data trans-
mission delays). Figure 4 shows transport latency as
compared to TCP in the kernel.

Here, we use two virtual machines on one physical
machine acting as the client and the server respectively.
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layer, kernel implementation, excluding name resolution.

Latency improvement of ASAP’s transport

We use [3] to add latency between the two virtual ma-
chines, making the RTT between them roughly 100ms.
The client downloads 11.18KB data, as in the previous
evaluation. Figure 4a shows the CDFs of ASAP’s and
TCP’s transmission time over 1000 trials. The results
confirm a significant reduction in latency. ASAP nearly
always achieves one RTT reduction in latency (100ms)
as compared to standard TCP. We then vary the file
size from 1KB to 500KB, and run each case over 200
trials. Figure 4b shows the median values of total delay.
ASAP achieves lower latency in all cases.

5.3 Computational overhead

ASAP adds some additional computational overhead
to several parts of today’s Internet, including clients,
web servers, DNS servers; and the new infrastructure
we deploy, the Provenance Verifier. To characterize
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Figure 5: Cryptographic overhead.

overhead of each of these components, we instrumented
our implementation with code to measure the (a) pass-
through time, i.e., the time from when a packet was
received to when it was processed and forwarded, and
(b) microbenchmarks, to characterize what fraction of
overheads were due to cryptographic processing. We
collected our experiments on a single core of a 2.83GHz
Intel Core 2 Quad Q9550 processor with 4GB RAM.

Provenance Verifier: FEach request to the PV re-
quires a private encryption to generate a PC. We would
like the overhead at the PV to be low, to reduce the
number of PVs, by enabling each PV to service a larger
number of clients. Figure 5 shows a CDF of the PV’s
per-request processing time with a 1024-bit RSA key,
over 1000 trials. We find that more than 95% of cer-
tification requests can be processed in less than 0.8ms.
Assuming each client needs to renew a PV once per
day, a single PV server with a single core could handle
several tens of millions of clients.

Client: There are two key sources of overhead at
clients: the time spent communicating with the PV,
and the time spent communicating with the server. The
former happens rarely — it is done when the client ob-
tains a new IP address (e.g. via DHCP), and therefore
does not affect the latency associated with connection
setup (except for connections initiated immediately af-
ter obtaining a new address). To evaluate the amount of
overhead ASAP introduces when communicating with
the server, we perform microbenchmarks (Figure 5).
ASAP’s overhead at the client was dominated by cryp-



tographic operations, namely, the encryption operations
involved in constructing the request certificate (RC).
However, this overhead was typically on the order of
1-2ms, substantially less than typical round-trip times.

DNS servers:  ASAP increases DNS overhead in
two ways. First, the client sends two queries to DNS,
which could double its workload in the worst case (if
entries are cached, this overhead could be substantially
reduced). Second, the ADNS does additional processing
on packet contents: it removes the ASAP component
of the request before processing and caching the ap-
propriate information, then replaces the ASAP compo-
nent before forwarding the response back to the LDNS.
To evaluate this overhead, we performed an experiment
where the client sends 1000 requests to the server. We
found that overhead increased by on the order of 100 mi-
croseconds at the LDNS and the ADNS. However, this
overhead is small compared to the total packet process-
ing delay in Unbound (0.7 ms on average).

Web server: An ASAP-enabled web server performs
an RSA verification of the message before processing it.
We measure this overhead in Figure 5. Here, we made
a client running in the UCLA PlanetLab site send 1000
requests to the ASAP-enabled web server. The median
time required to perform the verification operations on
a single request is 0.326ms, the mean is 0.359ms, and
the 95th percentile is 0.462ms. This is significantly less
than typical RTTs, so although it does add some com-
putational overhead, ASAP would provide a large ben-
efit in end-to-end delay.

5.4 PV eavesdropping defense

Recall (§2.3) that TCP and ASAP have differing secu-
rity with respect to eavesdropping. Call a client-server
pair (¢, s) attackable if an attacker can induce s to ac-
cept an incoming transport connection and send data
to ¢. In TCP, (c,s) is attackable if the attacker can
observe messages sent from s to ¢ (either because it is
truly located at ¢, or because it is eavesdropping). In
ASAP, in the worst case of a globally trusted PV, (¢, )
is attackable for any s if the attacker can observe mes-
sages sent from the PV to c.

Here we evaluate empirically the efficacy of using mul-
tiple PVs, such that (c,s) is attackable only if the at-
tacker can observe messages from all PVs to c. We
begin with a network map and a set of routes. We pick
locations for one or more PVs, and then find the worst
location for a single-site eavesdropper — i.e., the site
that maximizes the number of attackable pairs (c, s)
given the PV locations. We then iterate this for many
PV locations. Finally, we perform a similar worst-case
attackability calculation for TCP, which is equivalent
to maximizing betweenness centrality in the given net-
work.

We first study the attackability for ASAP in the Inter-
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Figure 6: CDF (over PV locations) of the percent of
IP addresses that are attackable in ASAP, based on Route

Views routing data.

net based on actual routes observed in Route Views [48].
This data set includes routes from a limited set (about
26) of vantage points, to all destination IP addresses in
the Internet; the PVs are chosen from those locations, as
are servers for TCP. We allow the attacker to eavesdrop
on any path that traverses one single (adversarially-
chosen) autonomous system.

Fig. 6 shows attackability (i.e., fraction of attacked
client-server pairs) on the z axis; the y axis is a CDF
over possible PV locations. One PV is vulnerable to
the attacker, who can simply eavesdrop on the PV’s
AS. However, the attacker’s effectiveness is reduced dra-
matically for two PVs. Further PVs offer diminishing
returns, asymptoting to 4.9% attackability. In contrast,
TCP’s attackability is 24%, and even when the attacker
is prevented from eavesdropping on a tier-1 AS, this
only falls to 9.84%.

Fig. 7 shows results for two PVs in additional topolo-
gies: six ISP networks, as measured by Rocketfuel [51],
in which we assume routes follow shortest paths; CAIDA’s
AS-level map of the Internet [17], in which we assume
routes follow common customer/provider/peer policies;
and the Route Views data with and without the tier 1
ASes being attackable.

These results show that for an attacker who can eaves-
drop on one worst-case site, two PVs are sufficient to
limit the attackability. In particular, even if two PVs
are placed randomly, the chance that ASAP has fewer
attackable client-server pairs than TCP is at least 75%
in all topologies we tested. Moreover, the PVs can be
intentionally placed in two topologically-diverse, and
therefore better-than-random, locations.

6. DEPLOYMENT

Like most new transport and naming protocols, our
design requires changes to certain clients and servers.
However, ASAP can be deployed in an incremental and
end-to-end manner, with even a single client-server pair
realizing benefits. We next describe the requisite changes
at participating clients, servers, and the server’s ADNS.



Topology ASAP TCP | Chance
(best PVs) ASAP

better

AS 1221 15.38% | 39.43% | 83.37%
AS 1239 2.20% | 17.80% | 84.98%
AS 1755 5.75% | 28.55% | T7.65%
AS 3257 6.21% | 28.81% | 75.30%
AS 3967 3.80% | 37.76% | 91.50%
AS 6461 4.35% | 44.65% | 88.04%
AS-level Internet 1.64% | 17.72% | 87.56%
Route Views 4.89% | 23.61% | 91.41%
Route Views w/o T1 4.89% | 9.84% | 93.88%

Figure 7: Attackability of TCP and ASAP with two PVs.
The columns are the topology, attackability of ASAP with
optimally-placed PVs, attackability of TCP, and the chance
that ASAP’s attackability is less than TCP’s if the PVs are

placed randomly.

ADNS: Since the ADNS is typically owned and op-
erated by the service provider, many deployed systems
(e.g., Akamai) leverage the ADNS as an easy-to-modify
location to place new functionality. Our implementa-
tion of ASAP consists of some simple extensions to soft-
ware running at the ADNS.

End host clients: We require modifications to the
client’s TCP implementation. A key question is whether
this is deployable in a backwards-compatible manner,
so clients interacting with legacy servers will simply fall
back to TCP. One option is the strategy of our imple-
mentation: include the certificates in the data portion of
the SYN packet. This is likely to work well in practice
since most current TCP implementations discard this
data; but technically it could be unsafe because legacy
servers that do use SYN data would misinterpret our
certificates as application data. Another option is to
put the certificates in a TCP option, as in TCP Fast
Open [45]. However, for this we would need more space
for options, as proposed in [26].

To avoid changing end host network stacks, applica-
tions could use ASAP on top of UDP, as in our modifica-
tion of UDT [8]. To avoid modifying end hosts entirely,
ASAP could be deployed at web proxies and caches.

Server: Like the client host, the server should be
modified with extensions to support the ASAP protocol.
If desired, ASAP could also be deployed as a reverse
proxy, to avoid the need to modify servers; however, we
note that service providers already commonly customize
their operating system and web server implementations.

PVs: Note that ASAP does not require deployment
of a shared PV infrastructure. Such a deployment sce-
nario would be useful and could arise, but in an initial
deployment each organization could host its own PVs,
thus requiring little coordination. This deployment is
likely to bring large benefits for content distribution net-
works and other large content providers.

DNSSEC instead of PVs: An alternative to verify-

ing source addresses with PVs is to use DNSSEC’s [12—-
14] designated signer (DS), public key (DNSKEY), and
signature (RRSIG) records to certify ownership of IP
addresses via reverse DNS lookup, as in [36]. The server
would verify the chain of certificates from the root of the
DNS hierarchy to the client. Servers could cache some
of these records near the top of the hierarchy, while the
client would provide others in its request. This leads to
a tradeoff: placing more records in the query increases
its size, which is already constrained (particularly when
piggybacked within DNS queries); but if we require the
server to cache more levels of the hierarchy of certifi-
cates, it will lead to cache misses and the server will
need to query the DNSKEY records from corresponding
DNS servers, increasing delay. In addition, compared
with our PV design, using DNSSEC may be more dif-
ficult to deploy, as it requires each client’s local ISP to
issue certificates of IP ownership to the client.

Leveraging accountable Internet architectures:
While ASAP does not require extensive changes to the
Internet, it can benefit from deployment of previously
proposed clean-slate designs. For example, systems that
cryptographically certify location or ownership of IP ad-
dresses [10,36] may obviate the need to run PVs.

7. RELATED WORK

There has been much work on network-layer changes
to reduce delays. Most closely related and concurrently
with our work, in TCP Fast Open (TFO) [45] a server
gives a client a cookie, which it can use to skip the 3SWH
on future connections with the server (or others that
have a shared secret key distribution arrangement with
the server). TFO is similar to a special case of ASAP
where the PV is the server. TFO is likely easier to
deploy because it does not require public-key cryptog-
raphy in the transport layer stack; servers can validate
the cookie more quickly than ASAP’s certificates and
it can fit in a single standard-sized TCP option field.
In ASAP, it would be easier for a client to use a single
provenance certificate across multiple servers that may
not trust each other. In addition, our work studied
how to defend against PV eavesdropping which would
be applicable to TFO as well if its cookies were used
across distributed servers; and our DNS improvements
are complementary to TCP Fast Open.

T/TCP [15,35] bypasses the 3-way handshake and
truncates TIME-WAIT State. However, T/TCP is quite
vulnerable to attacks [32]. TCP Fast Start [41] enables
clients to cache network parameters to speed up web
transfers. Some protocols such as the Stream Control
Transmission Protocol (SCTP) and the Host Identity
Protocol use four-way handshakes (at the cost of ad-
ditional delay) to gain better evidence that the initia-
tor really exists at the given address before allocating
state [27,39,52]; techniques we study in this paper may



provide additional gains for such protocols. Dukkipati
et al. [25] argue for increasing TCP’s initial conges-
tion window. To alleviate DNS resolution delays, DNS
records may be proactively cached [21]. Proposals on
HTTP aiming at reduce web latency include modifi-
cations to HTTP itself in the application layer [22],
and the transport protocol HTTP carries traffic over,
such as DHTTP [44]. There has been work on speeding
up TCP for long-lived flows over high-bandwidth net-
works [29,56]. Other works have observed that the con-
gestion control algorithm of TCP makes flows last much
longer than necessary, especially for short-lived flows
like web traffic; to address this, they propose new con-
gestion control and scheduling schemes [18, 24, 30, 37].
To reduce latency resulting from DNS queries, TCP
connection set up and HTTP session initiation, Cohen
et al. propose a design based on pre-fetching, including
pre-resolving domain names, pre-connecting, and pre-
warming the connection [19,20]. DEW [34] explores
ways by which a variety of Web requests and responses
could be piggybacked on DNS messages, but requires
modifications on both LDNSs and ADNSs. Most of
these works focus on individual protocols. Coopera-
tive caching and lookup can speed up DNS in isola-
tion [42,46]. By merging functions of DNS and TCP,
our design can realize additional gains. In addition,
our design aims to speed connection setup while retain-
ing the security and idempotency properties of existing
TCP and DNS infrastructures. At the same time, our
design is orthogonal to a number of these works, and
can be used in conjunction with them to gain additional
latency reductions.

In addition, there has been much work on making
application-layer changes to web infrastructures to re-
duce delay. While this space is too broad to summarize
here and is largely orthogonal to our work, we note
that several techniques can reduce the effect of trans-
port layer delays. Content distribution facilities enable
migration and replication of services closer to end users.
Application-layer protocol optimizations have been pro-
posed and integrated into the HTTP specification such
as persistent connections, and more recently Google’s
SPDY proposal [7]. Unfortunately, application-layer
techniques cannot eliminate the additional delays that
arise from transport and lookup operations. While these
techniques have become widely deployed, interactivity
of web requests remains a key concern that significantly
affects usability of many Internet services [23,38,49].

8. CONCLUSION

This paper presented ASAP, a new low-latency trans-
port protocol for wide-area networks. ASAP revisits
classic Internet design decisions by modifying and merg-
ing functionality of DNS and TCP to substantially re-
duce connection establishment delay, benefiting inter-

active communications such as web browsing.

We evaluated transport-layer performance of ASAP,
i.e., downloads of individual files. However, download-
ing a multi-object web page may compound ASAP’s
benefit (because the browser often needs to open TCP
connections to multiple servers in serial) and also may
reduce ASAP’s relative benefit (when connection estab-
lishment latency is dwarfed by other delays). Evaluat-
ing such application-level performance is an important
consideration for future work.

We thank Verisign, Inc. for supporting this work with
an Internet Infrastructure Grant, and Barath Raghavan
and our sheperd Vern Paxson for helpful comments.
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APPENDIX
A. BOUNDING THE NUMBER OF PVS

We model a network as an arbitrary graph G with n vertices
V', and assume that it employs fixed but arbitrary single-path
routing. That is, when s sends a message to d, it follows a specific
arbitrary path P(s,d); these paths may or may not be related to
shortest paths in the network. The attacker can eavesdrop on
some set of locations A C V, and therefore can eavesdrop on
s~ d traffic when P(s,d) N A # 0.

DEFINITION 1. A source-destination pair (s,d) is attackable
in a protocol (TCP or ASAP) for a given set E if the attacker can
cause s to send a flow of data to d. A destination d is attackable
if there exists a source s for which (s,d) is attackable. If there
are > n/2 such sources, then d is highly attackable.

We assume that ASAP uses a set P of PVs which are trusted by
all servers. Therefore, if any d is attackable in ASAP, then (s, d)
is attackable for all sources s.

THEOREM 1. Suppose (k+2)logy n PVs are placed in uniform-
random locations, and the attacker eavesdrops on an arbitrary set
of k locations after knowing where the PVs are placed. With prob-
ability > 1—% (over the choice of PV locations), any destination
that is attackable in ASAP is highly attackable in TCP.

PROOF. Fix any destination d and attacker locations A. Let
S 4 be the set of sources s for which the attacker can eavesdrop
on the path s ~ d, and let f = |Sa|/n. If f > %, then d is highly
attackable in TCP and the theorem holds for this d.

Otherwise, if f < 1, for ASAP, Pr[d is attackable] = Pr[P C

Sa] = fIPl < 27IPl, Now, we want to bound the probability
that any of the n possible destinations is attackable for any of the
(2) possible sets A. By a union bound over these n(Z) events,
the probability that any bad event happens is < n(2)2_|P| <
nk+12=IPl < Lsince |P| > (k +2)logyn. [



