
Balls and Bins with Structure:

Balanced Allocations on Hypergraphs

P. Brighten Godfrey∗

Abstract
In the standard balls-and-bins model of balanced allocations,
m balls are placed sequentially into n bins. Each ball chooses
d uniform-random bins and is placed in the least loaded bin.
It is well known that when d = logΘ(1) n, after placing m = n
balls, the maximum load (number of balls in a bin) is Θ(1)
w.h.p.

In this paper we show that as long as d = Ω(log n),

independent random choices are not necessary to achieve

a constant load balance: these choices may be structured

in a very general way. Specifically, we allow each ball i

to have an associated random set of bins Bi. We require

that |Bi| = Ω(log n) and that bins are included in Bi with

approximately the same probability; but the distributions

of the Bis are otherwise arbitrary, so that there may be

correlations in the choice of bins. We show that this model

captures structure important to two applications, nearby

server selection and load balance in distributed hash tables.

1 Introduction

In the standard balls-and-bins model of randomized
load balancing, m balls are placed sequentially into n
bins. Each ball probes the current load of d uniform-
random bins and is placed in the least loaded bin. The
maximum load is the maximum number of balls in any
bin at the end of the process. It is well known that
when d = 1, this procedure results in a maximum
load of Θ

(
log n

log log n

)
with high probability, and Azar

et al [1] showed that if d > 1, the maximum load is
log log n

log d + O(1) w.h.p. (see also [8]). In particular, when

d = logΘ(1) n, the maximum load is O(1) w.h.p.
Many subsequent works have studied placement al-

gorithms which do not probe independent and uniform-
random bins. For example, Vöcking [12] improved the
maximum load to log log n

d ln φd
+ O(1) where 1 ≤ φd ≤ 2 by

using a placement algorithm in which the bins are split
into d groups, each ball probes a random bin from each
group, and ties are broken asymmetrically. This yields
constant maximum load with d = Θ(log log n). Byers

∗CS Division, UC Berkeley. Supported in part by a Na-
tional Science Foundation Graduate Research Fellowship. Email:
pbg@cs.berkeley.edu.

et al [2] showed that if the probed bins are picked inde-
pendently as in the original model but with somewhat
nonuniform probabilities, the maximum load can still be
bounded by log log n

log d + O(1). Wieder [13] characterized
the nonuniform case when m � n.

None of these placement algorithms addresses the
fact that for some applications, probing certain sets of
d bins is more costly than other sets. Consider, for
example, a client arriving in a random location that
wishes to connect to a lightly-loaded server. Probing
the d closest servers (i.e., bins) is likely to be much
more desirable than probing d random servers, both
because the probes themselves will be cheaper, and
because the client will ultimately receive service from a
much closer server. To give applications such flexibility,
Kenthapadi and Panigrahy [5] studied more general bin-
selection processes for the case d = 2 by allowing each
ball to choose a random pair of bins from only a subset
of the possible pairs. This can be represented by a
graph G whose nodes are bins, and whose edges are
the allowable pairs. The standard result stated within
this model is that the maximum load is log log n

log 2 + O(1)
when G is the complete graph. But [5] showed that
G need not be complete: if G is almost regular with
degree nε, the maximum load is log log n+O(1/ε), which
for ε = Θ(1/ log log n) is within a constant factor of
the maximum load in the standard model. Following
the client-server example, this would allow a client
to consider pairs of servers among the nΘ(1/ log log n)

closest servers while still obtaining a maximum load of
O(log log n).

Model and Main Results. The present paper studies
structured choices for other values of d while allowing
even more flexible choice of bins. Our model, which
we will relate to that of [5] below, is simply to allow
each ball i to probe an associated random set of bins
Bi, whose distribution and size (i.e., d) may differ for
each ball. Note that this permits arbitrary correlations
between the probed bins in each Bi. What restrictions
on the distributions of the Bis are sufficient to guarantee
a good maximum load?

Somewhat surprisingly, when |Bi| = Ω(log n), we

need only require that each Bi satisfies a balance prop-
erty. In the simple case that d is the same for all balls,
Bi is balanced when for each bin j, Pr[j ∈ Bi] is within
a constant factor of the “fair” probability, d

n . Our main
theorem is that, under these conditions and for a con-
stant α to be specified, placing m = αn balls in n bins
results in a maximum load of 1 with high probability,
and placing m = n balls results in a maximum load of
d1/αe. Although the conditions are quite intuitive, the
difficulty in the proof is to deal with the dependencies
between each ball’s choices. We handle this by showing
that the distribution of balls in bins is approximately
dominated by a process of placing slightly more than m
balls into uniform-random least-loaded bins.

We also note a lower bound, that for any 1 ≤ d ≤
Θ

(
log n

log log n

)
, there exist balanced Bis for which the

maximum load is 1
d ·

ln n
ln ln n · (1 + o(1)) w.h.p. Thus,

the power of two choices result, that the maximum load
decreases to Θ(log log n) when d = 2, does not hold in
our model. Intuitively, this is because correlations in
the bin choices can be such that a ball which picks a
“hotspot” bin shares the same d alternative choices as
all the other ≈ ln n

ln ln n balls that picked the same hotspot.
Our main theorem shows that d = Ω(log n) alternatives
are sufficient to spread the load of hotspots, regardless
of the pattern of bin choices.

Relation to Balanced Allocations on Graphs.
The present paper’s setting can be related to the model
of [5] by generalizing balanced allocations on a graph
to balanced allocations on a hypergraph G. Each
hyperedge of G represents an allowable set of d bins, and
as before each ball probes the bins in a uniform-random
hyperedge. A special case of our theorem is that when
d = Θ(log n), the maximum load is Θ(1) as long as G
is almost regular (that is, the minimum and maximum
node degrees differ by at most a constant factor). This
permits as few as one hyperedge incident to each node
in the hypergraph, which translates to a minimum of
Θ(log n) neighbors per node. Comparing this with the
nΘ(1/ log log n) minimal degree for the case d = 2 shows
that increasing the number of probes to d = Θ(log n)
substantially decreases the connectivity necessary to
obtain a maximum load within a constant factor of that
in the standard balls-and-bins model. Continuing the
earlier client-server example, which will be treated more
formally later, a client arriving in a random location
can restrict its attention to the Θ(log n) closest servers
rather than the nΘ(1/ log log n) required when d = 2.

Applications. Finally, we describe two applications
of our main result. The first, nearby server selection,

fleshes out the client-server example above. The second
application involves load-balanced file placement in dis-
tributed hash tables (DHTs). We describe how a scheme
of Byers et al [2] can, in an amenable DHT structure, be
modified to obtain a better balance while sending the
same total number of messages. By structuring choices
in file placement to match the DHT’s topology, each
choice is less costly than a random choice. These ex-
amples suggest that our model of correlated bin choice
captures structure important to applications.

Our main theorem and the lower bound are proved
in Sections 2 and 3, respectively. We discuss the two
applications in Section 4, and conclude in Section 5.

2 Main Theorem

We are given n bins into which will be placed m = αn
balls. For each ball i we are given a distribution Bi

over sets of bins. Each ball is placed according to the
following algorithm which we will call Algorithm Ai:

1. Let Bi be a random set of bins distributed as Bi

(chosen independently of other selections).

2. Place ball i in a uniform-random bin from among
those bins in Bi with the fewest number of balls.

Definition 2.1. A random set of bins B is β-balanced
if, for all bins j,

1
βn

≤ Pr[j ∈ B] · E
[

1
|B|

| j ∈ B

]
≤ β

n
.

Theorem 2.1. Let ε > 0, δ ∈ (0, 1), and suppose
that for each ball i, Bi is β-balanced and |Bi| ≥ 26 ·
(1+ε)2

ε2δ · log n. Let β′ = (1 + ε + o(1)) · β and α =

(1−δ)/
⌈
1− ln β′

ln(1−(β′−1)/(β′2−1))

⌉
. Then with probability

≥ 1 − O(n−1), the maximum load is 1 after placing
m = αn balls, and the maximum load is d1/αe after
placing m = n balls.

2.1 Proof of Theorem. For convenience, unless
otherwise stated, the proof and associated lemmas
assume that m = αn (the case m = n is an easy final
step).We analyze Algorithm A by showing that it is
dominated by Algorithm B: for each ball A places with
structured choices, B will place a ball into each of k
uniform-random empty bins, where the constant k will
be selected later (in the proof of Lemma 2.2) such that
mk ≤ n. We first state several definitions and lemmas,
which will be proved in later subsections, and then prove
the theorem. The bulk of the technical material actually
appears in the proof of Lemma 2.2.

Definition 2.2. A coupling of two random allocations
of balls in bins, D and D′, is a pair of functions f, f ′ :

[0, 1] → {0, . . . ,m}n such that, if R is a random variable
uniform on [0, 1], then f(R) and f ′(R) are distributed
as D and D′, respectively.

Definition 2.3. Given two random allocations D,D′

of balls in bins, D is ε-dominated by D′, written D �ε

D′, when there is a coupling (f, f ′) of D and D′ such
that Pr[f(R)j ≤ f ′(R)j ∀j] ≥ 1− ε, where f(·)j denotes
the number of balls in bin j in the allocation f(·).

Let X◦D denote the random allocation that results
from application of an algorithm X to the random
allocation D of balls in bins. Define P1(i) and P2(i)
as the random allocations that result from applying
algorithms A and B, respectively, i times, beginning
with the allocation Z of zero balls in the bins. That is,

P1(i) =
{

Z if i = 0
Ai ◦ P1(i− 1) if i > 0

P2(i) =
{

Z if i = 0
B ◦ P2(i− 1) if i > 0.

Lemma 2.1. If D �ε E then Ai ◦D �ε Ai ◦ E ∀i.

Lemma 2.2. Ai+1 ◦ P2(i) �O(n−2) B ◦ P2(i) for all
i ∈ {0, . . . ,m−1}, as long as Bi+1 is β-balanced, |Bi+1|
satisfies the bound given in Theorem 2.1, and m = αn.

Proof of Theorem 2.1: We will show that P1(i) �εi

P2(i) for all i, where εi = O
(

i
n2

)
. This implies the

theorem as follows: since mk < n, P2(m) has maximum
load 1; since P2(m) εm-dominates P1(m), P1(m) must
have the same maximum load with probability ≥ 1 −
εm = 1−O(m/n2) = 1−O(n−1).

We show P1(i) � P2(i) by induction on i. For the
base case where i = 0, note that P1(0) = P2(0) trivially,
since no balls have been placed. For the inductive step,
assume that P1(i) �εi P2(i). Then we have

P1(i + 1) = Ai+1 ◦ P1(i) (by definition)
�εi Ai+1 ◦ P2(i) (induction

and Lemma 2.1)
�O(n−2) B ◦ P2(i) (Lemma 2.2)

= P2(i + 1) (by definition).

Letting εi+1 = εi + O(n−2), we can conclude that
P1(i + 1) �εi+1 P2(i + 1).

For the case m = n, let Dt be the allocation where
each bin has exactly t balls. By the above result, placing
αn balls results in an allocation O(n−2)-dominated by
D1. It is easy to see that beginning with D1 and placing
αn additional balls results in an allocation O(n−2)-
dominated by D2; iterating this argument yields the
desired result for m = n.

2.2 Proof of Lemma 2.1. Algorithm Ai is equiva-
lent to (1) picking a random set of bins Bi, (2) picking
a uniform-random permutation (b1, . . . , b`) of the bins
Bi, and (3) deterministically placing the ball in the first
least-loaded bin, i.e., the first bin in the permutation
among those with the minimum number of balls. Now
let (f, f ′) be a coupling which witnesses D �ε E. To
show that Ai ◦ D �ε Ai ◦ E, we construct a coupling
(g, g′) of Ai ◦D and Ai ◦E by coupling the randomness
in D and E in the same way as (f, f ′), and additionally
coupling Ai’s choice of Bi and (b1, . . . , b`).

We now show that this coupling witnesses Ai◦D �ε

AI ◦ E. Consider any outcome in which Dj ≤ Ej

for all bins j. Let j∗ be the bin in which the ball is
placed in Ai ◦ D, that is, the first least-loaded bin in
(b1, . . . , b`). Since Dj ≤ Ej∀j, the first least-loaded bin
for Ai◦E must either occur at j∗ or at some later bin in
the permutation—so in Ai ◦ E the ball is either placed
in the same bin j∗ or else j∗ already had more balls
than in Ai ◦D. In either case, (Ai ◦D)j∗ ≤ (Ai ◦E)j∗

which further implies (Ai ◦D)j ≤ (Ai ◦E)j∀j. Finally,
the assumption that Dj ≤ Ej∀j is true for a set of
outcomes of measure ≥ 1 − ε, from which we can
conclude Ai ◦D �ε Ai ◦ E.

2.3 Proof of Lemma 2.2. For notational conve-
nience, we use A := Ai+1 throughout this section.

We prove Lemma 2.2 using several supporting lem-
mas. First, we provide an analog of Hall’s Theorem for
fractional matchings with vertex weights (Lemma 2.3),
which we use to show that A ◦ D � B ◦ D for any
fixed allocation D that obeys a “smoothness” property
(Lemma 2.4). Next, we show that the fraction of bins
which are empty in the set Bi chosen by algorithm A
concentrates (Lemma 2.5), which implies that P2(i) is
smooth with high probability (Lemma 2.6). Finally,
Lemmas 2.4 and 2.6 together imply Lemma 2.2, which
we prove at the end of this subsection.

Definition 2.4. Given an undirected bipartite graph
G = (V1, V2, E) and weights w(v) ≥ 0 for each vertex
v, a perfect weighted matching on G is a nonnegative
function f : E → R for which

∀v ∈ V1, V2 f(v) = w(v),(2.1)

where f(v) :=
∑

e∼v f(e).

Lemma 2.3. Given a bipartite graph G = (V1, V2, E)
with vertex weights w for which w(V1) = w(V2), a
perfect weighted matching exists if and only if w(S) ≤
w(N (S)) for all S ⊆ V1 (equivalently, for all S ⊆ V2),
where w(S) :=

∑
v∈S w(v) and N (v) is the neighborhood

of v.

Proof: Follows a standard max flow-min cut argument;
see Appendix A.

Definition 2.5. A fixed allocation D of balls to bins is
β-smooth when, for each bin j,

1
βfn

· 1(Dj=0) ≤ pj ≤
β

fn
· 1(Dj=0) + O(n−3) · 1(Dj>0),

where pj is the probability that Algorithm A places a
ball in bin j given the allocation D, f is the fraction of
bins that are empty in D, and Dj denotes the number
of balls in bin j.

The smoothness property says essentially that A
picks one of the fn empty bins with probability that
is within a factor β of the “fair chance”, i.e., 1

fn , and
has only a very small chance of picking an occupied bin.
Thus, smoothness depends on both the allocation D and
the placement algorithm A.

Lemma 2.4. Let D be a β-smooth allocation of ki
balls. Then A ◦ D �O(n2) B ◦ D as long as k ≥⌈
1− ln β

ln(1−(β−1)/(β2−1))

⌉
.

Proof: To demonstrate A ◦D �ε B ◦D, it is sufficient
to show that there is a measure-preserving mapping f
between outcomes in A ◦ D and outcomes in B ◦ D
such that ωj ≤ f(ω)j for all outcomes ω, except on a
set of measure ≤ ε (where ωj represents the number
of balls in bin j in outcome ω). To show that such a
mapping exists, we will construct a suitable bipartite
graph G = (V1, V2, E) and weights w(·), and find a
perfect weighted matching within it, as follows. We have
a node in V1 for each subset of k bins drawn from the
empty bins in D. The weight w(v) of a node v ∈ V1

is the probability that the set v of bins is selected to
receive balls in B ◦D. Each node in j ∈ V2 corresponds
to a single empty bin in D, and its weight w(j) is
set to pj , the probability that bin j receives the ball
in A ◦ D. We add an additional node j∗ to V2 with
weight w(j∗) = Pr[A puts a ball in an occupied bin].
The graph contains an edge v → j whenever j ∈ v,
and an edge v → j∗ for all v.

Note that if (v, j) ∈ E and j 6= j∗, then outcome
v has a ball in every bin in which j has a ball. As
a consequence, the existence of a perfect weighted
matching on G with weights w implies that A◦D �w(j∗)

B ◦D. Moreover by a union bound over the n bins and
the fact that D is smooth, w(j∗) = O(n·n−3) = O(n−2),
as desired.

It remains to show that a perfect weighted match-
ing exists, which we accomplish by checking the suf-
ficient condition, w(S) ≤ w(N (S))∀S ⊆ V2, given
in Lemma 2.3. Consider any subset S ⊆ V2 of the

nodes. If j∗ ∈ S, then the condition is trivially satisfied
since N (S) = V1 and w(V1) = w(V2) by construction.
Thus, we may assume j∗ 6∈ S. For convenience define
f = n−ki

n to be the fraction of bins that are empty. To
upper bound w(S), we have

w(S) ≤ β · |S|
fn

(2.2)

w(S) = 1− w(V2 \ S) ≤ 1− fn− |S|
βfn

,(2.3)

both of which follow from the β-smoothness of D. Also,

w(N (S)) = Pr[one of k random bins hits S]

= 1−
(

fn− |S|
fn

) (
fn− |S| − 1

fn

)
· · ·

· · ·
(

fn− |S| − (k − 1)
fn

)
.

Note that w(N (S)) is concave in |S| and reaches 1
for sufficiently large |S|, and both Eqns. 2.2 and 2.3 are
linear in |S|. Letting s∗ be the value of |S|

fn for which the
upper bounds (2.2) and (2.3) are equal, it thus suffices
to show that w(S) ≤ w(N (S)) when |S|/n = s∗. In this
case we have

w(N (S)) ≥ 1−
(

fn− |S|
fn

)k

= 1− (1− s∗)k

w(S) ≤ 1− fn− |S|
βfn

= 1− 1− s∗

β
.

Solving 1 − 1−s∗

β ≤ 1 − (1 − s∗)k, we obtain k ≥
1− ln β

ln(1−s∗) . Substituting s∗ = β−1
β2−1 yields the lemma.

The above lemma showed essentially that smooth-
ness is sufficient for Lemma 2.2. It remains to show that
P2(i) is smooth. Smoothness requires that the chance
that A places a ball in a particular bin is nearly equal
for all empty bins, but this probability is inversely pro-
portional to the number of empty bins in Bi+1. Our
strategy is therefore to show that with high probability,
the number of empty bins in Bi+1 is close to its mean;
that is, the probed set is “good”.

We proceed by defining “goodness”, showing that
any fixed set of bins is very likely good (Lemma 2.5),
and then extending this to show that P2(i) is smooth
(Lemma 2.6). At the end of this section we bring
together the building blocks into a proof of Lemma 2.2.

Definition 2.6. A set of bins B is ε-good if
the number of empty bins in B is contained in[

1
1+ε · f |B|, (1 + ε) · f |B|

]
, where f = n−ki

n is the (ran-
dom) fraction of bins that are empty in P2(i).

Lemma 2.5. For any fixed set of bins B for which
|B| ≥ (4`+2)(1+ε)2

fε2 · lnn and any `, ε > 0,
PrP2(i)[B is ε-good] ≥ 1−O(n−`).

Proof: We use a “Poissonization” technique to convert
from P2 to a distribution wherein the bins are indepen-
dent (see [9]). Define a new distribution P3(i) which
places a ball in each bin independently with probability
ik/n, and let F be the (random) fraction of bins that
are empty in P3(i). Note that P3(i) may have more
or fewer balls than P2(i), but conditioned on F = f ,
P3(i) is identical to P2(i). Moreover, E[F] = f and Fn

is approximately Poisson, so PrP3(i)[F = f] = Ω
(

1√
n

)
.

Using these facts, and defining for convenience δ = ε
1+ε

and G = {B is ε-good},

Pr
P2(i)

[¬G] = Pr
P3(i)

[¬G |F = f]

≤
PrP3(i)[¬G]

PrP3(i)[F = f]

≤
PrP3(i)

[
F 6∈

[
1

1+εf |B|, (1 + ε)f |B|
]]

Ω(1/
√

n)
≤ O

(√
n
)
· Pr

P3(i)
[F 6∈ (1± δ)f |B|]

≤ O
(√

n
)
·
(
e−f |B|δ2/4 + e−f |B|δ2/2

)
,

by applying a pair of Chernoff bounds [10]. This bound
is ≤ O(n−`) as long as |B| ≥ (4`+2)(1+ε)2

fε2 · lnn.

Lemma 2.6. Pr[P2(i) is (1 + ε + o(1))β-smooth] ≥ 1−
O(n−2) for any ε > 0 as long as |Bi+1| ≥ 26(1+ε)2

fε2 · lnn
and A is β-balanced.

Proof: Recall from Definition 2.5 that to show smooth-
ness of P2(i), we must bound the probability pj that A
puts a ball in bin j. Here pj is itself a random variable,
dependent on P2(i). For convenience let B := Bi+1 be
the random set of bins selected by A for ball i+1, let G
be the event that B is ε-good, and let Pj be the event
that j receives the ball. For the upper bound, we have

pj = Pr[j ∈ B] · Pr[Pj |j ∈ B]
= Pr[j ∈ B] · (Pr[Pj ∧G|j ∈ B] +

Pr[Pj ∧ ¬G|j ∈ B])

≤ Pr[j ∈ B] · Pr[¬G|j ∈ B] + Pr[j ∈ B]
n∑

s=1

Pr[Pj ∧G|j ∈ B ∧ |B| = s] · Pr[|B| = s|j ∈ B]

≤ Pr[¬G|j ∈ B] + Pr[j ∈ B] · 1(j empty)

n∑
s=1

1 + ε

fs
· Pr[|B| = s|j ∈ B] (by def. of ε-good)

= Pr[¬G|j ∈ B] +
1 + ε

f
· 1(j empty) ·

Pr[j ∈ B] · E
[

1
|B|

|j ∈ B

]
≤ Pr[¬G|j ∈ B] +

(1 + ε)β
fn

· 1(j empty),

where the last step follows since A is β-balanced. By
Lemma 2.5 and the fact that A picks B independently
of P2(i), for any bin j, PrA◦P2(i)[¬G|j ∈ B] = O(n−6)

as long as |B| ≥ 26(1+ε)2

fε2 · lnn. Thus,

Pr
P2(i)

[
Pr
A

[¬G|j ∈ B] ≤ O(n−3)
]
≥ 1−O(n−3).

Combining the previous two inequalities, we obtain an
upper bound on pj :

Pr
P2(i)

[
pj ≤

(1 + ε)(1 + o(1))β
fn

· 1(j empty)+

O(n−3) · 1(j occupied)

]
≥ 1−O(n−3).

Using a similar technique we can obtain the lower
bound,

Pr
P2(i)

[
pj ≥

1(j empty)

(1 + ε)(1 + o(1))βfn

]
≥ 1−O(n−3).

Combining the upper and lower bounds and taking a
union bound over all n bins j, we have that P2(i) is
(1 + ε + o(1))β-smooth with probability ≥ 1−O(n−2).

Proof of Lemma 2.2: Let β′ := (1 + ε + o(1)) ·
β. Construct the coupling of A ◦ P2(i) and B ◦
P2(i) as follows. For each outcome (allocation) for
which P2(i) is β′-smooth, use the coupling given by
Lemma 2.4. Conditioned on such an outcome D, we
have A ◦ D �O(n−2) B ◦ D. By Lemma 2.6, this
covers all but a set of measure O(n−2), on which
set algorithms A and B may be coupled arbitrarily,
yielding A ◦ P2(i) �O(n−2)+O(n−2) B ◦ P2(i). To
satisfy the constraints of these two lemmas, we require
k ≥

⌈
1− ln β′

ln(1−(β′−1)/(β′2−1))

⌉
and |B| ≥ 26(1+ε)2

fε2 · lnn.
The fraction f of empty bins in P2 must in turn be ≥ δ
for some δ > 0, which is satisfied as long as α ≤ 1−δ

k , as
given in the statement of the lemma.

3 Lower Bound

Theorem 3.1. For any d ∈
[
1, ln n

ln ln n

]
, there exists a

1-balanced distribution of sets of bins (Bi) for which
|Bi| = d and which results in a maximum load of
≥ 1

d ·
ln n

ln ln n · (1 + o(1)) w.h.p. when n balls are allocated
to the n bins.

Proof: We will in fact give a class of bin choices which
result in the desired maximum load. Given an arbitrary
fixed pattern of d bin indexes B = (b1, . . . , bd), we have
ball i pick a single random value R ∈ {1, n}, and set
Bi = {b1 + R, . . . , bd + R}, with arithmetic mod n.
It is easy to see that this distribution is 1-balanced.
Now by reduction to a standard balls-and-bins process
with d = 1 choices, some value r∗ of R will be picked
by ln n

ln ln n · (1 + o(1)) balls w.h.p. [3]. Each of those
balls is therefore choosing from the same set of bins
{b1+r∗, . . . , bd+r∗}, so at least one of those bins receives
≥ 1

d ·
ln n

ln ln n · (1 + o(1)) balls.

4 Applications

4.1 Nearby Server Selection. We give an example
application of our result to a nearby server selection
problem. We have n servers (e.g., wireless base stations)
placed randomly in the unit square in the plane, and m
clients (e.g., wireless-enabled laptops) arrive iteratively
at random locations, probe the load of a set of servers
within some distance r, and connect to a random one
of the least loaded among these. We desire to minimize
the maximum load on a server, while keeping r small.
This problem was suggested to us by [7], as a variant
of a client-server matching problem in [4] in which
clients may be moved to different servers after they have
connected, and the number of moves is minimized. Here
we show that in this randomized version of the problem,
Θ(n) clients can be matched to n servers with no moves.

Corollary 4.1. If r = Θ
(√

log n
n

)
, then with proba-

bility 1− O(n−1), each client is matched with a unique
server as long as m ≤ αn for some constant α; and each
server has ≤ d1/αe clients if m = n.

Proof: Divide the unit square into subsquares of size

b
√

log n
n on each side. By a Chernoff bound, there exists

a sufficiently large b such that all subsquares contain

Θ(log n) servers w.h.p. By selecting r = c
√

log n
n for

sufficiently large c, any possible disc of radius r centered
in the unit square will include Θ(c2) subsquares and
hence Θ(c2 log n) servers in its set of options Bi. Thus,
for sufficiently large c, each Bi is large enough to satisfy
the lower bound required by Theorem 2.1. Moreover,
for any server j, accounting for edge effects,

1
4
· c2 log n

n
≤ Pr[j ∈ Bi] ≤

c2 log n

n
,

and by the above argument, w.h.p. over the choice of
server locations, E

[
1

|Bi| |j ∈ Bi

]
= Θ

(
1

c2 log n

)
. From

this it follows that Bi is Θ(1)-balanced w.h.p. Thus, we
can apply Theorem 2.1 and the result follows.

4.2 Load Balance in Distributed Hash Tables.
In this section we describe an application of our main re-
sult to load balance in distributed hash tables (DHTs).
Compared with a similar scheme of Byers et al [2], we
will obtain a better balance by using more choices for
each file’s location, while using the same number of mes-
sages (within constant factors) because those choices
align with the DHT’s structure. We note in advance,
however, that unlike [2], our scheme requires a deter-
ministic overlay topology. In particular we will describe
our scheme in the context of the Chord DHT [11].

In Chord, each node v is assigned a pseudorandom
identifier id(v) in the DHT’s keyspace [0, 1]. Ownership
of the keyspace is partitioned among the nodes such that
a key k is owned by its successor—that is, the node
whose ID most closely follows k, where the keyspace
is treated modularly. Each node maintains links to
certain other nodes as a function of the IDs of the
nodes. Specifically, each node v has links, called the
successor list, to the Θ(log n) successors of id(v), where
n is the number of nodes in the system. Node v also
has links called fingers to the owners of id(v) + b−i for
each i > 1, which results in Θ(logb n) additional links.
(In the original Chord design, b = 2.) Finally, each file
o is stored in the DHT at the node that owns the key
h(o) ∈ [0, 1], where h is a well-known hash function. We
will assume that n objects are placed.

One challenge is to achieve a good load balance.
Due to the random identifier selection, some nodes own
Θ(log n

n) of the keyspace and hence can expect to receive
Θ(log n) objects. Even if all nodes had equal shares of
the keyspace, the standard balls-and-bins result would
imply a maximum load of Θ(log n

log log n).
Byers et al [2] showed that if we have d well-known

hash functions h1, . . . , hd and each ball is placed at
the least-loaded among the owners of h1(o), . . . , hd(o),
then the maximum load is log log n

log d + O(1) w.h.p.—even
though some nodes (bins) are a factor Θ(log n) more
likely to be considered than others. Increasing d obtains
a better load balance, but at the cost of requiring more
messages to insert and retrieve objects. Specifically,
since mean route lengths in Chord are Θ(log n) [11],
Θ(d log n) messages will be sent on average.

Our scheme will have a single hash function h, and
each object o will be placed in a random least-loaded
node among a set of nodes B(o) chosen as the owners
of h(o) + b−i, for each i > 1. This maintains the
essential property that each file is located at one of a
small number of well-known locations, but mirrors the
topology of the DHT. We next analyze the messaging
cost and maximum load of this scheme. In the interest
of conciseness, we only sketch the analysis.

The scheme can be implemented by routing an

insert request to the owner x of h(o) at an expected
cost of Θ(log n) messages. The node x then forwards the
request to the nodes B(o). Since |h(o)− x| = O

(
log n

n

)
w.h.p., node x has a direct connection (via a finger link)
to a node within keyspace distance O

(
log n

n

)
of each

probe target. By using the DHT’s successor list, those
neighbors can reach the probe targets in O(1) additional
hops each. Thus, O(log n) messages are sent in total.

In bounding the maximum load, we apply Theo-
rem 2.1. To deal with the imbalance in the size of the
keyspace that nodes own, we will simply have each ob-
ject ignore any node in B whose ownership is < 1

cn or
> c

n for some constant c. Note that this new strat-
egy can only increase the maximum load. It can be
shown that this will eliminate a constant fraction of the
object’s choices, leaving Θ(log n) choices w.h.p.; more-
over, the constant can be made arbitrarily high by ad-
justing b so that Theorem 2.1’s constraint on |B| is
satisfied. It is also straightforward to show that for
any node v owning a fraction ∈ [1

cn , c
n] of the keyspace,

Pr[v ∈ B] = Θ
(

log n
n

)
. Thus, we can apply Theorem 2.1

to conclude that the maximum load is O(1) w.h.p.

5 Conclusion

This paper leaves several open problems. A factor
log log n gap remains between our lower and upper
bounds. Also, we conjecture that for any ε > 0, it
is possible to place (1 − ε)n balls while maintaining a
maximum load of 1 w.h.p., as long as d = Θ(log n) is
sufficiently large and the probed bins Bi are sufficiently
close to being 1-balanced.

Our model requires that each ball be placed in a
uniform-random least-loaded bin among those probed.
Suppose instead that each ball arrives with an ordered
list of the bins, and is placed in the first empty bin
on the list (assuming there are m ≤ n balls). What
properties of the orderings ensure that only the first
few bins on each list need to be probed? Note that
linear probing in hash tables [6] is a special case of
this model in which the ordered lists are given by
{R,R + 1, . . . , R + n− 1} (mod n) where R is uniform-
random in {1, . . . , n}.

We thank the anonymous reviewers for useful com-
ments and corrections.

References

[1] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal.
Balanced allocations. In Proc. STOC, 1994.

[2] John Byers, Jeffrey Considine, and Michael Mitzen-
macher. Geometric generalizations of the power of two
choices. In Proc. SPAA, 2004.

[3] Gaston Gonnet. Expected length of the longest probe
sequence in hash code searching. In Journal of the
ACM, volume 28, April 1981.

[4] Edward F. Grove, Ming-Yang Kao, P. Krishnan, and
Jeffrey Scott Vitter. Online perfect matching and mo-
bile computing. In Proceedings of the Fourth Workshop
on Algorithms and Data Structures (WADS), 1995.

[5] Krishnaram Kenthapadi and Rina Panigrahy. Bal-
anced allocation on graphs. In Proc. SODA, 2006.

[6] Donald E. Knuth. Art of Computer Programming, Vol-
ume 3: Sorting and Searching (2nd Edition). Addison-
Wesley Professional, April 1998.

[7] Henry Lin, Constantinos Daskalakis, Robert Kleinberg,
and Kamalika Chaudhuri. Personal communication,
2007.

[8] Michael Mitzenmacher. The Power of Two Choices in
Randomized Load Balancing. PhD thesis, University of
California - Berkeley, 1996.

[9] Michael Mitzenmacher and Eli Upfal. Probability and
Computing. Cambridge University Press, 2005.

[10] Rajeev Motwani and Prabhakar Raghavan. Random-
ized Algorithms. Cambridge University Press, 1995.

[11] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications.
In Proc. SIGCOMM, 2001.

[12] Berthold Vöcking. How asymmetry helps load balanc-
ing. In IEEE Symposium on Foundations of Computer
Science, pages 131–141, 1999.

[13] Udi Wieder. Balanced allocations with heterogenous
bins. In Proc. SPAA, 2007.

A Proof of Lemma 2.3

The necessity of the condition is clear. We next show
that a perfect weighted matching exists assuming the
condition holds. Construct a graph H which includes
the nodes and edges of G = (V1, V2, E), additional
source and sink nodes s and t, an edge s → v with
capacity w(v) for each v ∈ V1, and an edge v → t with
capacity w(v) for each v ∈ V2. Finally, we give each
edge in E capacity ∞.

It is easy to see that there is a perfect matching in
G if and only if the maximum flow fmax from s to t
in H is w(V1). Thus for the remainder of the proof it
is sufficient to show that if fmax < w(V1) then there
exists an S ⊆ V1 for which w(N (S)) < w(S).

Suppose fmax < w(V1), and let (C1, C2) be a
minimum cut of H with s ∈ C1 and t ∈ C2. We take
S := C1∩V1. Since the edges of E have capacity ∞, C1

must include N (S). Therefore the cut edges must be
those from s to V1 \ S, and those from N (S) to t. The
total capacity of these edges is w(V1)−w(S)+w(N (S)).
Thus we have w(V1) − w(S) + w(N (S)) = fmax <
w(V1), so w(N (S)) < w(S) as desired.

