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Abstract
This report documents the program and outcomes of Dagstuhl Seminar 15071 “Formal Foun-
dations for Networking.” Networking is in the midst of a revolution being driven by rapidly
expanding infrastructures and emerging software-defined networking architectures. There is a
growing need for tools and methodologies that provide rigorous guarantees about performance,
reliability, and security. This seminar brought together leading researchers and practitioners from
the fields of formal methods, networking, programming languages, and security, to investigate
the task of developing formal foundations for networks.
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The scale and complexity of computer networks has increased dramatically in recent years,
driven by the growth of mobile devices, data centers, and cloud computing; increased concerns
about security; and generally more widespread and diverse uses of the Internet. Building
and operating a network has become a difficult task, even for the most technologically
sophisticated organizations.

To address these needs, the research community has started to develop tools for managing
this complexity using programming language and formal methods techniques. These tools
use domain-specific languages, temporal logics, satisfiability modulo theories solvers, model
checkers, proof assistants, software synthesis, etc. to specify and verify network programs.

Yet despite their importance, tools for programming and reasoning about networks are still
in a state of infancy. The programming models supported by major hardware vendors require
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configurations to be encoded in terms of low-level constructs – e.g., hardware forwarding
rules and IP address prefixes. To express richer policies, network operators must incorporate
“tribal knowledge” capturing requirements that cut across different customers, service-level
agreements, and protocols and can easily lead to contradictions. In addition, networks are
rarely static, so operators must deal with updates to configurations and the complications
that arise during periods of transition or when unexpected failures occur.

The goal of this seminar was to bring together leading practitioners from the areas of
formal methods, networking, programming languages, and security, to exchange ideas about
problems and solutions, and begin the task of developing formal foundations for networks.
The seminar program was grouped into broad categories addressing the following issues:

Networking Applications (Akella, Gember-Jacobson, Jayaraman, Rexford). What are the
key concerns in enterprise, data center, and wide-area networks today? What kinds of
modeling, verification, and property-checking tools are operators deploying? What kinds
of scalability challenges are they facing?
Emerging Areas (Papadimitriou, Rozier). What are the key issues in emerging areas
such as crowd-sourced networks and aerospace engineering? Can existing tools be easily
adapted to these areas? How can new researchers get involved?
Distributed Systems (Canini, Cerny). What are some techniques for handling the
distributed systems issues that arise in modeling and reasoning about networks? How can
we exploit these insights to build practical tools for verifying properties in the presence
of replicated state, asynchronous communication, and unexpected failures?
Domain-Specific Tools (Chemeritskiy, Mahajan, Panda, Rybalchenko, Sagiv). What
are the best approaches for verifying properties of real-world networks? How can we
incorporate features such as dynamic control programs and mutable state? How can we
make these tools scale to networks of realistic size?
General Tools (Brucker, Ganesh, Guha, Jia, Nelson, Rosenblum, Rybalchenko). There is
a rich literature on temporal logics, satisfiability modulo theories checkers, model checkers,
proof assistants, Datalog, etc. What are the key differences between these tools and how
can they be applied to networks?
Platforms and Models (Guha, Schlesinger, Reitblatt, Walker, Zave). What is the state-
of-the-art in network programming? How can we build compilers and hypervisors that
correctly translate from high-level models to low-level implementations?
Program Synthesis (Buchbinder, Chaudhuri, Cerny, Yuan). Synthesis is a promising
approach to building correct software, since programs are generated automatically using
a verification tool. What are the best current techniques for using model checkers and
satisfiability-modulo theories solvers to generate network configurations, update protocols,
and policies?

The seminar comprised four and a half days of presentations, interspersed with discus-
sions, tool demonstrations, and working groups. This report collects the abstracts of the
presentations, gives summaries of discussions and working groups, and lists open questions.
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3 Overview of Talks

3.1 Abstractions for Network Functions
Aditya Akella (University of Wisconsin – Madison, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Akella, Aditya; Gember-Jacobson, Aaron
URL http://opennf.cs.wisc.edu

Network functions (NFs), also called middleboxes, are devices that perform custom packet
processing functions. With the advent of network functions virtualization (NFV), where NFs
are deployed within VMs or as software processes, it has become markedly simpler to bring
up of tear down NFs within networks. Furthermore, software defined networking (SDN) is
being used to flexibly steer traffic through specific NF instances. The confluence of NFV
and SDN opens up the door to two exciting sets of scenarios, namely distributed processing
and service chaining. We argue that key attributes of NFs – which differentiate them from
traditional routers/switches – impede our ability to realize the full potential of distributed
processing and service chaining. We present abstractions and systems that help overcome
these impediments.

3.2 Modeling and Conformance Testing of Network Access Policies in
HOL-TestGen

Achim D. Brucker (SAP – Karlsruhe, DE)

License Creative Commons BY 3.0 Unported license
© Achim D. Brucker

Modern systems need to comply to large and complex security policies that need to enforced
at runtime. This runtime enforcement needs to happen on different levels, e.g., ranging from
high level access control models to firewall rules. We present an approach for the modular
specification of security policies (e.g., access control policies, firewall policies). Based on this
formal model, i.e, the specification, we discuss a model-based test case generation approach
that can be used for both testing the correctness of the security infrastructure as well as the
conformance of its configuration to a high-level security policy.

3.3 Distributed SDN controllers
Marco Canini (Université catholique de Louvain – Louvain-la-Neuve, BE)

License Creative Commons BY 3.0 Unported license
© Marco Canini

This talk motivates and illustrates the challenges to correctly design and reason about
distributed controllers. It then presents Software Transactional Networking, a distributed
SDN control plane based on software transactional memory principles that supports concurrent
policy updates while ensuring consistent policy composition and high availability.
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3.4 Program Synthesis for Network Updates
Pavol Cerny (University of Colorado at Boulder – Boulder, US)

License Creative Commons BY 3.0 Unported license
© Pavol Cerny

Joint work of McClurg, Jedidiah; Hojjat, Hossein; Cerny, Pavol; Foster, Nate
Main reference J. McClurg, H. Hojjat, P. Cerny, N. Foster, “Efficient Synthesis of Network Updates,”

arXiv:1403.5843v3 [cs.PL], 2015.
URL http://arxiv.org/abs/1403.5843v3

Software-defined networking (SDN) is revolutionizing the networking industry, but current
SDN programming platforms do not provide automated mechanisms for updating global
configurations on the fly. Implementing updates by hand is challenging for SDN programmers
because networks are distributed systems with hundreds or thousands of interacting nodes.
Even if initial and final configurations are correct, naively updating individual nodes can
lead to incorrect transient behaviors, including loops, black holes, access control violations,
and others. This talk presents an approach for automatically synthesizing updates that are
guaranteed to preserve specified properties. We formalize network updates as a distributed
programming problem and develop a synthesis algorithm that uses counterexample-guided
search and incremental model checking to dramatically improve performance. We describe
our prototype implementation, and present results from experiments on real-world topologies
and properties demonstrating that our tool scales to updates involving thousands of nodes in
a few seconds.

3.5 Program Synthesis
Swarat Chaudhuri (Rice University – Houston, US)

License Creative Commons BY 3.0 Unported license
© Swarat Chaudhuri

The field of program synthesis envisions a software design process where programmers write
partial, nondeterministic specifications of programming tasks, and powerful algorithms are
used to find correct implementations of these specifications. In this talk, I will describe
some of my recent work in this area and its potential application in the domain of networks.
Specific topics will include:
1. Lambda2, a new algorithm for example-driven synthesis of higher-order functional pro-

grams.
2. Pliny, a new project on program synthesis and repair that utilizes knowledge implicit in

large pre-existing corpora of programs.

3.6 VERMONT (Verifying Network Monitor)
Evgeny Chemeritskiy (Applied Research Center for Computer Networks – Moscow, RU)

License Creative Commons BY 3.0 Unported license
© Evgeny Chemeritskiy

VERifying MONiTor (VERMONT) is a software toolset for checking the consistency of
network configurations with formally specified invariants of Packet Forwarding Policies
(PFP).
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Correct and safe management of networks is a very hard task. Every time the current
load of flow tables should satisfy certain requirements. Some packets have to reach their
destination, whereas some other packets have to be dropped. Certain switches are forbidden
for some packets, whereas some other switches have to be obligatorily traversed. Loops
are not allowed. These and some other requirements constitute a PFP. One of the aims
of network engineering is to provide such a loading of switches with forwarding rules as to
guarantee compliance with the PFP. VERMONT provides some automation to the solution
of this task.

VERMONT can be installed in line with the control plane. It observes state changes of a
network by intercepting messages sent by switches to the controller and command sent by
the controller to switches. It builds an adequate formal model of a whole network and checks
every event, such as installation, deletion, or modification of rules, port and switch up and
down events, against a set formal requirements of PFP. Before a network update command
is sent to a switch VERMONT anticipates the result of its execution and checks whether a
new state of network satisfies all requirements of PFP. If this is the case then the command
is delivered to the corresponding switch. Upon detecting a violation of PFP VERMONT
blocks the change, alerts a network administrator, and gives some additional information to
elucidate a possible source of an error.

VERMONT has a wide area of applications. It can be attached to a SDN controller just to
check basic safety properties (the absence of loops, black-holes, etc) of the network managed
by the controller. VERMONT may be also cooperated with software units (like FlowVisor)
that aggregate several controllers. In this case VERMONT checks the compatibility of PFPs
implemented by these controllers. This toolset can be used as a fully automatic safeguard
for every software application which implements certain PFP on a SDN controller.

3.7 The Impact of Community Structure on SAT Solver Performance
Vijay Ganesh (University of Waterloo – Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Vijay Ganesh

Modern CDCL SAT solvers routinely solve very large industrial SAT instances in relatively
short periods of time. It is clear that these solvers somehow exploit the structure of real-
world instances. However, to-date there have been few results that precisely characterise this
structure. In this paper, we provide evidence that the community structure of real-world
SAT instances is correlated with the running time of CDCL SAT solvers. It has been known
for some time that real-world SAT instances, viewed as graphs, have natural communities in
them. A community is a sub-graph of the graph of a SAT instance, such that this sub-graph
has more internal edges than outgoing to the rest of the graph. The community structure
of a graph is often characterised by a quality metric called Q. Intuitively, a graph with
high-quality community structure (high Q) is easily separable into smaller communities,
while the one with low Q is not. We provide three results based on empirical data which
show that community structure of real-world industrial instances is a better predictor of the
running time of CDCL solvers than other commonly considered factors such as variables
and clauses. First, we show that there is a strong correlation between the Q value and
Literal Block Distance metric of quality of conflict clauses used in clause-deletion policies
in Glucose-like solvers. Second, using regression analysis, we show that the the number of
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communities and the Q value of the graph of real-world SAT instances is more predictive
of the running time of CDCL solvers than traditional metrics like number of variables or
clauses. Finally, we show that randomly-generated SAT instances with 0.05 ≤ Q ≤ 0.13 are
dramatically harder to solve for CDCL solvers than otherwise.

3.8 Machine-Verified Network Controllers
Arjun Guha (University of Massachusetts at Amherst – Amherst, US)

License Creative Commons BY 3.0 Unported license
© Arjun Guha

Joint work of Guha, Arjun; Reitblatt, Mark; Foster, Nate

In many areas of computing, techniques ranging from testing to formal modeling to full-blown
verification have been successfully used to help programmers build reliable systems. But
although networks are critical infrastructure, they have largely resisted analysis using formal
techniques. Software-defined networking (SDN) is a new network architecture that has the
potential to provide a foundation for network reasoning, by standardizing the interfaces used
to express network programs and giving them a precise semantics.

This talk describes the design and implementation of the first machine-verified SDN
controller. Starting from the foundations, we develop a detailed operational model for
OpenFlow (the most popular SDN platform) and formalize it in the Coq proof assistant.
We then use this model to develop a verified compiler and runtime system for a high-level
network programming language. We identify bugs in existing languages and tools built
without formal foundations, and prove that these bugs are absent from our system. Finally,
we describe our prototype implementation and our experiences using it to build practical
applications.

3.9 Management Plane Analytics
Aaron Gember-Jacobson (University of Wisconsin at Madison – Madison, US)

License Creative Commons BY 3.0 Unported license
© Aaron Gember-Jacobson

While it is generally held that network management is tedious and error-prone, it is not well
understood which specific management practices increase the risk of failures. To address
this gap, we propose a management plane analytics framework that an organization can
use to: (1) infer which management practices can impact network health, and (2) develop a
predictive model of health, based on observed practices, to improve network management.
We overcome the challenges of noisy data and insufficient samples by adopting a “big data”
approach, in which we synthesize data from many networks and build predictive models over
aggregates. Our current models can predict network health with an accuracy of 76–89%.
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3.10 Network Verification in Microsoft Azure
Karthick Jayaraman (Microsoft Research – Redmond, US)

License Creative Commons BY 3.0 Unported license
© Karthick Jayaraman

Network verification is problem of critical importance for managing large-scale data centers.
In this talk, we will describe a system that we built to perform run-time monitoring of the
data plane of Azure data center network, and assure its correctness and consistency. Our
system uses a tool called SecGuru that leverages Z3, a SMT solver, to prove properties about
access-control lists and routing tables. Our objective is to prove local correctness of devices,
and most of the global properties can be decomposed to local properties. Our system is
currently deployed, and its use has led to a positive measurable impact in assuring reliability
of the network.

3.11 Verifying Network Protocols using Declarative Networking
Limin Jia (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY 3.0 Unported license
© Limin Jia

In this talk, I will first give a short tutorial on Declarative Networks. I will explain the
syntax and semantics of NDlog, a network declarative language, and how to program in
NDlog. In the second part of my talk, I will present our recent work on verifying secure
network protocols using declarative networks. NDlog serves as a unified specification both
for generating low-level implementations for empirical evaluation and for verifying formal
properties. I will present a program logic that we developed for deriving invariant properties
of NDlog programs that execute in an adversarial environment. These invariant properties are
safety properties on traces that are expressive enough to express origin and path authenticity
properties of networks.

3.12 Configuration verification: A missing link toward fully verified
networks

Ratul Mahajan (Microsoft Research – Redmond, US)

License Creative Commons BY 3.0 Unported license
© Ratul Mahajan

What does it mean to be running a fully verified network? One perspective is that a verified
network is one that is running verified 1) hardware; 2) software; 3) data plane; and 4) config-
uration. Given prior work in first three domains, the missing link is configuration verification.
I’ll describe our recent work on a logic-based approach for verifying the configuration of
large, traditional (non-SDN) networks. I’ll also describe how our approach can help bridge
traditional and SDN networks.
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3.13 SAT Applications Tutorial (plus a pinch of Margrave)
Tim Nelson (Brown University, Providence, US)

License Creative Commons BY 3.0 Unported license
© Tim Nelson

This talk provides an overview of using SAT-solvers for network analysis. For perspective,
it includes a discussion of our prior work on configuration analysis in Margrave, and shows
how rich questions about configuration behavior can be answered via SAT-solvers. It also
shows examples of how to use Margrave-style analyses to resolve questions about the stateful
behavior a configuration describes.

3.14 Verifying Mutable Datapaths
Aurojit Panda (University of California, Berkeley – Berkeley, US)

License Creative Commons BY 3.0 Unported license
© Aurojit Panda

Recent work has made great progress in verifying the correctness of forwarding tables
in networks. However, these approaches cannot be used to verify networks containing
middleboxes such as caches and firewalls whose forwarding behavior depends on previously
observed traffic. We explore how to verify reachability properties for networks that include
such “mutable datapath” elements. Our work leverages recent advances in SMT solvers, and
the main challenge lies in scaling the approach to handle large and complicated networks.
While the straightforward application of model checking to this problem can only handle
very small networks (if at all), our approach can verify invariants on networks containing
30,000 middleboxes in a few minutes.

3.15 Software-Defined Crowd-Shared Networks
Panagiotis Papadimitriou (Leibniz Universität Hannover – Hannover, DE)

License Creative Commons BY 3.0 Unported license
© Panagiotis Papadimitriou

Recently there has been an increasing interest in providing wider access to Internet. One
opportunity for sharing Internet access in residential areas is to exploit the spare capacity
in home broadband connections. Since such crowd-shared networks entail considerable
configuration overhead both for home network users and ISPs, we leverage on SDN to
outsource their configuration and management to third parties. Enabling a third party to
federate wireless home networks can reduce the expenditure for network operators and enable
new economic models for generating revenue from currently underutilized infrastructures.
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3.16 Proof-Carrying Network Code
Mark Reitblatt (Cornell University – Ithaca, US)

License Creative Commons BY 3.0 Unported license
© Mark Reitblatt

Joint work of Reitblatt, Mark; Foster, Nate; Kozen, Dexter; Mamouras, Konstantinos; Silva, Alexandra

In many network settings, multiple parties interact to form a network program. For example,
in PANE, different network users and applications are delegated with “shares” of the network
which they can in turn control or delegate. To protect parties from one another, these shared
networks usually enforce a rigid mode of interaction. Instead, we propose a mechanism
(Proof Carrying Network Code) for a more flexible, policy-based interaction. Principals are
able to specify requirements for other parties to meet when handling their traffic, and the
other parties are required to show that their program meets these requirements. Analogous
to Proof Carrying Code, in which binaries carry verifiable proofs of their own safety, Proof
Carrying Network Code comes with a verifiable certificate that a certain policy is satisfied.
In this talk I’ll present our initial design and implementation of the framework, and discuss
future directions for exploration.

3.17 SDN Applications
Jennifer Rexford (Princeton University – Princeton, US)

License Creative Commons BY 3.0 Unported license
© Jennifer Rexford

Software-Defined Networking (SDN) is changing how networks are designed and managed.
By offering a simple, open interface to the data plane, SDN enables data-plane verification
techniques to check that a network-wide snapshot of the forwarding rules satisfies key network
invariants. In this presentation, we discuss several example SDN applications, with an eye
toward new research opportunities in verification and programming languages. We consider
toy applications like MAC learning, stateful firewalls, and server load balancing to illustrate
subtle bugs that can be hard to prevent or detect. We also survey several prominent
commercial SDN applications (e.g., wide-area traffic engineering, network virtualization for
multi-tenant data centers, and traffic steering through middleboxes) to illustrate further
opportunities for research in language abstractions and verification techniques. Example
challenges include (i) performing multiple tasks simultaneously with a single set of rules,
(ii) policies (and network invariants) that change over time, (iii) uncertainty in the ordering
of events, (iv) limitations on rule-table space, (v) non-deterministic applications, and (vi)
interactions with other network protocols (such as TCP and BGP).

3.18 A Brief Look at Probabilistic Model Checking
David Rosenblum (National University of Singapore – Singapore, SG)

License Creative Commons BY 3.0 Unported license
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In this talk I will give an overview of the motivation and main ideas behind probabilistic
model checking, and I will discuss recent research on the use of perturbation theory as a
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way of dealing with uncertainty about probability parameters in stochastic models and the
effect of perturbations on verification results. I will conclude with a discussion of some of
the challenges in applying probabilistic model checking to problems in networking.

3.19 Formal Methods Challenge: Efficient Reconfigurable Cockpit
Design and Fleet Operations using Software Intensive,
Networked, and Wireless-Enabled Architecture (ECON)

Kristin Yvonne Rozier (University of Cincinnati – Cincinnati, US)

License Creative Commons BY 3.0 Unported license
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We are at the dawn of a new generation of aircraft! Current aircraft are consistently built
over-weight and over-budget and suffer from limitations that cannot carry forward into
our increasingly digital age. In order to meet the demands placed on future aircraft, we
need to design a new type of net-enabled aircraft by reducing aircraft weight, increasing
automation and modularity, moving from hardware to software systems, moving from on-
board/aircraft-based systems to cloud/fleet-based systems, and thereby facilitating easier
and more responsive maintenance and system health management procedures.

For example, the wiring alone on the A-380 weighs approximately six tons, while each
ton of weight in the aircraft infrastructure costs an estimated $7.2 billion in fuel across
a fleet in the U.S. each year. We ask the question: can we replace some of these wires
with wireless systems? Can we add wireless backup systems for wired systems that don’t
currently have backups due to weight constraints? But then how do we design these new
hybrid systems in a way that allows us to rigorously reason about their safety, reliability,
availability, and security? For another example, can we replace heavy, customized, and
therefore hard-to-maintain cockpit systems by lighter, more modular, alternatives using
wireless, software, or cloud-based technologies? We have not solved the formal verification
problem for current cockpits; how will we scale to net-enabled cockpits?

We must reason about an aircraft as a network of avionics sub-systems, about a fleet as a
network of aircraft, and about both of these being located in the cloud. What restrictions
do we need to make to enable formal verification, from design-time to runtime? Join this
NASA-lead team of government, academia, and industry experts as we attempt to answer
the ultimate question: how can we design and verify a new class of net-enabled aircraft that
are lighter, cheaper, and safer than ever before?

3.20 Constrained Horn Clauses for Software, Hardware, Network
Verification and Synthesis

Andrey Rybalchenko (Microsoft Research UK – Cambridge, GB)

License Creative Commons BY 3.0 Unported license
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We show how models of software, hardware, and networks can be represented using logical
formulas in a way that facilitates deductive reasoning about them using verification conditions.
These verification conditions appear in form of constrained Horn clauses and can be solved
efficiently using state-of-the-art automated deduction techniques.
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3.21 Reasoning about Stateful Networks
Mooly Sagiv (Tel Aviv University – Tel Aviv, IL)
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We describe techniques for verifying properties of networks of middleboxes.

3.22 Protocol-independent Packet Processing
Cole Schlesinger (Princeton University – Princeton, US)

License Creative Commons BY 3.0 Unported license
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The OpenFlow protocol initially provided a compelling but simple abstraction for network
hardware: A switch is a match-action table configured by a controller. Later versions
recognized that switch architectures comprise pipelines of tables, each table capable of
operating on a fixed set of header fields, and fine-tuned the interface to allow for control of
the pipeline.

But in some switches, the packet parser and pipeline are not fixed; rather, they can be
configured in advance to extract and operate on arbitrary header fields. Architectures like
Intel’s FlexPipe and Cisco’s Doppler already have this functionality under the hood – after
all, it would be impractical to fabricate a new ASIC each time a new protocol is adopted.
And new hardware has been proposed to expose parser and pipeline configuration directly to
the controller in an SDN setting.

This talk explores the capabilities of reconfigurable switches as well as emerging languages
and compilation techniques for guiding reconfiguration.

3.23 Decentralizing SDN Policies
Sharon Shoham Buchbinder (Academic College of Tel Aviv-Yaffo – Tel Aviv, IL)

License Creative Commons BY 3.0 Unported license
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Joint work of Padon, Oded; Immerman, Neil; Karbyshev, Aleksandr; Lahav, Ori; Sagiv, Mooly

Software-defined networking (SDN) is a new paradigm for operating and managing computer
networks. SDN enables logically-centralized control over network devices through a “controller”
– software that operates independently of the network hardware. Network operators can run
both in-house and third-party SDN programs on top of the controller, e.g., to specify routing
and access control policies.

In practice, having the controller handle events limits the network scalability. Therefore,
the feasibility of SDN depends on the ability to efficiently decentralize network event-handling
by installing forwarding rules on the switches. However, installing a rule too early or too late
may lead to incorrect behavior, e.g., (1) packets may be forwarded to the wrong destination
or incorrectly dropped; (2) packets handled by the switch may hide vital information from
the controller, leading to incorrect forwarding behavior. The second issue is subtle and
sometimes missed even by experienced programmers.
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The contributions of this paper are two fold. First, we formalize the correctness and
optimality requirements for decentralizing network policies. Second, we identify a useful class
of network policies which permits automatic synthesis of a controller which performs optimal
forwarding rule installation.

3.24 Online Data Center Modeling
Robert Soulé (Università della Svizzera italiana – Lugano, CH)
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Modern enterprise data centers are crucial infrastructure, but are also complex, dynamic,
highly networked systems. As such, their capacity, performance, behavior, and failure modes
are difficult to predict, understand, and plan for. A major reason for this complexity is
that the many conceptual layers involved in an enterprise data center (physical network
connectivity, physical and virtual machines, link layers, VLANs, routing, service-oriented
architectures, application deployment, etc.) are managed today by tools and techniques
which focus on only one or a few layers.

Rather than focusing on mechanisms to control and manage subsets of a data center, we
will create a common data model and representation for the state of an operational data
center which can be populated and driven by logs, traces, and configuration information;
queried by operators to determine global properties of the system (such as traffic matrices),
and drive online workload-driven simulations to explore the effects of configuration changes.
Our goal is to provide a shared substrate for diverse data center management functionality,
analogous to the way that the relational model of databases provided a common substrate
for tabular data.

3.25 Implementing Path Queries
David Walker (Princeton University – Princeton, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Narayana, Srinivas; Arashloo, Mina; Rexford, Jennifer; Walker, David

Decades of experience suggests that complex programming systems should be implemented
using a stack of compiler intermediate languages. Indeed, virtually all modern compilers use
such an architecture, and we see no reason that network programming systems should deviate
from this well-established trend. In this talk, we illustrate this idea via a case study involving
the implementation of an expressive new query language for software-defined networks. This
query language allows users to measure the flow of packets along user-specified paths in a
network. It can help diagnose link congestion, implement traffic engineering algorithms, or
mitigate DDoS attacks. More specifically, the language allows network operators or control
software to issue queries specified as regular expressions over predicates on packet locations
and header values. It also uses SQL-like “groupby” constructs to aggregate results anywhere
along a path. A run-time system compiles the high-level queries into a deterministic finite
automaton, which is encoded in the NetKAT intermediate language. The NetKAT program
is then compiled into a set of OpenFlow rules. Finally those OpenFlow rules are distributed
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to a set of switches. As packets flow through the network, switches stamp packets with
automaton states, which tracks the packets’ progress towards fulfilling a query. Only when a
query is satisfied are packets counted, sampled, or sent to collectors for further analysis. By
processing queries inline in the data plane, users “pay as they go” as data-collection overhead
is limited to only those packets that satisfy the query. We have implemented our system on
top of Pyretic, an open source SDN platform, and evaluated its performance on a campus
topology.

3.26 Programming Network Policies by Examples
Yifei Yuan (University of Pennsylvania – Philadelphia, PA)

License Creative Commons BY 3.0 Unported license
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The emergence of programmable interfaces to network controllers offers network operators the
flexibility to implement a variety of policies. We propose NetEgg, a programming framework
that allows a network operator to specify the desired functionality using example behaviors.
Our synthesis algorithm automatically infers the state that needs to be maintained to exhibit
the desired behaviors along with the rules for processing network packets and updating the
state. We report on an initial prototype of NetEgg. Our experiments evaluate the proposed
framework based on the number of examples needed to specify a variety of policies considered
in the literature, the computational requirements of the synthesis algorithm to translate
these examples to programs, and the overhead introduced by the generated implementation
for processing packets. Our results show that NetEgg can generate implementations that
are consistent with the example behaviors, and have performance comparable to equivalent
imperative implementations.

3.27 A formal model of a cloud, featuring modular, expressive,
re-usable abstractions

Pamela Zave (AT&T Labs Research – Bedminster, US)
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Today’s Internet has many layers at different scopes and levels, instead of the fixed 5 or 7
prescribed by classic reference models. This talk presents a new architectural model suitable
for today’s Internet, in which each layer instantiates and constraints the same template
of mutable state to carry out its particular purposes. The model is illustrated with four
formally-specified layers implementing a realistic large-scale cloud with rich functionality
including middlebox policies, live VM migration, tenant isolation, and multiple data centers.
The model supports formal, modular verification of a wide variety of properties including
reachability, security, consistent updates, and safe optimizations.
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4 Working Groups

4.1 Beyond Verification
This working group was motivated by the prevalence of discussions focused on verification
during the early days of the seminar. Many people felt that the goal of users such as network
operators is not verification, but rather proper, predictable functioning of a network. To
achieve the real goal, it is necessary to reason about less well-understood “ility” properties,
as well as well-understood logical properties. Reasoning about “ility” properties may require
different frameworks from logical properties. Even for logical properties, verification is just
one type of formal reasoning, and one of the most expensive. Consequently, we decided that
“before and besides verification” describes our concerns more accurately.

The most important research questions concern formal descriptions: What is a basic set
of formal descriptions that will cover all needs? What are the relationships among these
descriptions? Given such a set of descriptions, the group produced the following list of
(non-verification) goals or ways of reasoning about them:

safe optimization
semantic-difference analysis
change analysis
root-cause analysis
test-case generation
simulation
performance analysis
understanding design principles
understanding trade-offs in a design space

We agreed that the distinction between networks and distributed systems is institutional
only. That being the case, we wondered about what part of networking is missing from
distributed systems, to the disadvantage of the work? We also talked about the well-known
“design principle” papers, namely “End-to-end arguments in system design” (Saltzer, Reed,
and Clark) and “The design philosophy of the DARPA Internet protocols” (Clark). If we
had up-to-date formal descriptions as a basis for reasoning, how would these principles hold
up? Or would they be replaced by others?

4.2 Abstractions for Capturing Intent
This working group discussed the design of higher-level abstractions that capture operator
intent. The discussion was motivated by the observation that many problems in networking
stem from the fact that network software is expressed at a low-level of abstraction – one that
does not necessarily match intent.

The first part of the discussion enumerated aspects of network behavior that are important
to operators. Starting with existing configuration languages, the group noted a focus on
two features: (i) forwarding paths and (ii) security policies. However, precisely capturing
security policies often requires describing both what is allowed and what is not allowed,
which is difficult using mechanisms such as access control lists. Similarly, working with
concrete forwarding paths can create a mismatch with intent – the operator may specify
concrete paths when actually any of a much large set of paths would suffice. Performance is
another important aspect of intent, but is not typically captured in low-level configuration
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languages. Operators often want to optimize for objectives such as low latency or congestion.
Finally, the group noted that service-level agreements often state resilience to failures and
incorporate temporal notions.

The second part of the discussion investigated concrete mechanisms for expressing intent.
Some participants suggested reverse engineering intent from legacy deployments. The idea
here would be to extract information from low-level configurations and put them into higher-
level analytical models that are designed to capture intent. Other participants highlighted
languages based on path formalisms such as NetKAT and FlowLog, languages that incorporate
bandwidth guarantees such as Merlin, and platforms such as Click and P4. The group closed
with a more speculative discussion on whether networks will be built using domain-specific
software stacks or Turing-complete languages.

4.3 Network Verification: What’s New?
Most current network verification tools are either based on domain-specific decision procedures
(e.g., Header Space Analysis, VeriFlow, etc.) or encode networking problems as inputs for
existing tools (e.g., Alloy, Z3, etc.). This working group explored the question: what, if
anything, is new in network verification?

Many participants felt that although it might be possible in principle to encode networking
problems as inputs for other solvers, there may be value in developing domain-specific
decision procedures – typically there is domain knowledge that can be exploited to improve
precision and performance. However, others noted that domain knowledge can sometimes be
incorporated into the encoding itself, although this makes the encoding more complicated and
susceptible to bugs. The group also discussed properties and noted that building on existing
tools may make it difficult or impossible to express certain features such as quantitative
constraints or probabilistic bounds. Moreover, there may be symmetries based on topology
that can be exploited to obtain parametric and compositional reasoning, which is quite
powerful. Another pragmatic challenge stems from the fact that network behavior is defined
both by a program and a configuration. Almost all participants agreed that having open
repositories of benchmarks and challenge problems would help focus community effort on the
right problems. The group closed with a discussion of testing tools and security properties
such availability, confidentiality, and anonymity.

4.4 Building Decomposable Control Abstractions
The question posed to this working group was: What abstractions can allow us to decompose
a logically-centralized controller into modules? The discussion identified that controller
modularity might come in several flavors: a “horizontal decomposition” into a collection of
distributed controllers, or a “vertical decomposition” pushing certain elements of control
downward into the data plane. These decompositions might be combined. For example, a
logically-centralized control program could be fragmented across a central controller, end-
hosts, and software in the data plane of switches, taking advantage of different information
and reaction times available to each type of component.

Why would one want to decompose a controller? The participants saw many potential
opportunities: eliminating reactivity at the controller, avoiding latency to the controller,
offloading work from the hypervisor (e.g. via vertical decomposition), measurement and
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monitoring, real-time congestion avoidance inside network switches or end-hosts (as in
several recent papers), and flexible placement and relocation of middlebox functions. Some
application-level processing such as MapReduce aggregation could even be offloaded to
network devices for greater efficiency.1

Discussion participants pointed out a growing diversity of hardware and software providing
substrates for network control. For example, Facebook’s “6-pack” is a modular switch that
runs with split control, using a local controller on the switch that communicates with a
centralized controller. Several SDN and traditional switch vendors have released whitebox
hardware enabling computation directly on switches, and Open Network Linux provides
an operating system for such gear. The rise of “disaggregation” and rack-sized machines
will provide new opportunities for control of their networks. Even the OpenFlow protocol,
typically thought of as programming dumb switches with simple instructions, can encode
perhaps surprisingly complex behavior in the forwarding plane.2 Bianchi et al.3 propose to
further enrich OpenFlow with a minimal amount of stateful processing – taking a step in a
finite state machine – to build functionality such as firewalls and load balancers. All these
provide interesting new options for factoring a control application.

But hardware and protocols by themselves are not enough. The question originally posed
to the working group – that of the right abstractions for decomposition – is an open problem.
Several recent works provide some steps: Kandoo (Yeganeh and Ganjali, HotSDN 2012)
decomposes control into two layers, global centralized control and local control at each
switch, with applications such as network measurement. Recursive SDN (work by McCauley,
Panda, Liu, Kazemkhani, Koponen, Raghavan, and Shenker) builds a hierarchy of SDN
controllers, tackling problems of network repair and traffic engineering. Beehive (also Yeganeh
and Ganjali, HotNets 2014) provides a programming abstraction similar to a centralized
controller, and automatically decomposes the application into distributed execution across
multiple controllers. The participants in the working group speculated about further sources
of inspiration for solutions: OSPF areas, FlowLog, and work on automated parallelization of
programs. From the latter research area, the key take-away is that the data dependencies
are the trickiest aspect of the problem to grapple with.

5 Open Problems

Several open problems emerged from discussions throughout the seminar:
What are the most important verification challenges in networking from the perspective
of practitioners? Can the community assemble repositories of benchmarks and challenge
problems to focus attention on the right issues?
What are the right high-level language abstractions for programming networks, and what
guarantees could we expect a compiler to provide – reachability, security, or even properties

1 Luo Mai, Lukas Rupprecht, Abdul Alim, Paolo Costa, Matteo Migliavacca, Peter Pietzuch, and
Alexander Wolf, “NetAgg: Using Middleboxes for Application-specific On-path Aggregation in Data
Centres”, in ACM CoNEXT 2014.

2 Michael Borokhovich, Liron Schiff, and Stefan Schmid, “Reclaiming the Brain: Useful OpenFlow
Functions in the Data Plane”, in ACM HotNets 2014.

3 Giuseppe Bianchi, Marco Bonola, Antonio Capone, and Carmelo Cascone, “OpenState: Programming
Platform-independent Stateful OpenFlow Applications Inside the Switch”, in ACM SIGCOMMComputer
Communication Review, April 2014.
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as detailed as the correct use of cryptography? Can these abstractions streamline some
of the distributed aspects of network programming?
What are appropriate formalisms for expressing and automatically verifying network
properties? Reachability properties are ubiquitous in networking, being useful for charac-
terizing connectivity, routing, and access control policies. But operators also care about
quantitative properties such as latency, congestion, and resilience.
What is the right division of labor between static and dynamic verification? Static tools
find errors earlier in the development process and do not impose a run-time overhead.
But dynamic techniques can be simpler and are able to detect bugs in control software
and hardware errors.
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