Minimizing Churn in Distributed Systems

P. Brighten Godfrey, Scott Shenker, and lon Stoica
UC Berkeley
Computer Science Division

{pbg,shenker,istoica}@cs.berkeley.edu

ABSTRACT

A pervasive requirement of distributed systems is to detl ehiurn
— change in the set of participating nodes due to joins, duice
leaves, and failures. A high churn rate can increase costie-or
crease service quality. This paper studies how to reducendhu
selecting which subset of a set of available nodes to use.

First, we provide a comparison of the performance of a rafige o
different node selection strategies in five real-worldésacAmong
our findings is that the simple strategy of picking a unifarmdom
replacement whenever a node fails performs surprisingly, Wée
explain its performance through analysis in a stochastideho

Second, we show that a class of strategies, which we calf-‘Pre
erence List” strategies, arise commonly as a result of apiivg for
a metric other than churn, and produce high churn relativedce
randomized strategies under realistic node failure pattetUsing
this insight, we demonstrate and explain differences ifoperance
for designs that incorporate varying degrees of randotioizaiNe
give examples from a variety of protocols, including anycaser-
lay multicast, and distributed hash tables. In many casegly

adding some randomization can go a long way towards reducing

churn.

Categories and Subject Descriptors

C.2.4 Distributed Systemg: Distributed applications; C.4Fer-
formance of System§ Fault tolerance; G.3qrobability and Statis-
tics]: Renewal theory

General Terms
Design, Theory, Reliability

Keywords

Churn, node selection, multicast, DHT

1. INTRODUCTION

Almost every distributed system has to deal with churn: gean
in the set of participating nodes due to joins, graceful ésasand
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failures. There is a price to churn which may manifest itself
dropped messages, data inconsistency, increased usaiesxqed
latency, or increased bandwidth use [21, 29]. Even in peg@eer
systems which were designed from the outset to handle cthese
costs limit the scenarios in which the system is deployfjleAnd

even in a reasonably stable managed infrastructure likecRlab

[4], there can be a significant rate of effective node faildue to
nodes becoming extremely slow suddenly and unpredict&aly [

In this paper, we study how to reduce the churn rate by intel-
ligently selecting nodes. Specifically, we consider a sgeria
which we wish to usé& nodes out of: > k available. How should
we select whichk to use in order to minimize churn among the
chosen nodes over time? This question arises in many cas®s, s
as the following:

e Running a service on PlanetLab in whieh= 500 nodes
are available and we would like =~ 20 to run the service in
order to have sufficient capacity to serve requests.

e Selecting areliable pool &f ~ 1000 super-peers from among
n & 100,000 end-hosts participating in a peer-to-peer sys-
tem.

e Choosingk nodes to be nearest the root of an overlay multi-
cast tree, where failures are most costly.

e In a storage system of nodes, choosing nodes on which
to place replicas of afile.

To better understand the impact of node selection on chuen, w
study a set of strategies that we believe are both relevamautice,
and provide a good coverage of the design space.

At the high level, we classify the selection strategies gltwo
axes: (1) whether they use information about nodes to attémnp
predict which nodes will be stable, and (2) whether theyaepla
failed node with a new one. We refer to strategies that basesé-
lection on individual node characteristiesd, past uptime or avail-
ability) as Stability-Predictivestrategies (opredictivefor short),
and ones that ignore such informationStability-Agnosti¢or just
agnostig. On the second axis, we use the tdfiwedfor strategies
that never replace a failed node from the original selecétdamd
Replacemenfor strategies that replace a node as soon as it fails, if
another is available.

Predictive Fixedstrategies are often used in the deployment of
services on PlanetLab, where typically developers pick afsaa-
chines with acceptable past availability, and then rurr thgstem
exclusively on those machines for days or montReedictive Re-
placemenstrategies appear in many protocols that try to dynami-
cally minimize churn. The most common heuristic is to setbet
nodes which have the longest current uptime [13, 18, 32].



Agnosticstrategies can frequently describe systems which do not
explicitly try to minimize churn. The simplest form éfgnostic Re-
placementtrategy isSRandom Replacement (RR¢place a failed
node with a uniform-random available node. Another imparta
form of agnostic replacement strategy iPeeference List (PL)
strategy, which arises as a result of optimizing for a meitfer
than churn: rank the nodes according to some preference arde
pick the topk available nodes. Note that we use the term PL specif-
ically in the case that the preference ordendasdirectly related to
churn g.g, latency), and is essentially static. Such PL strategies
turn out to describe many systems well. One example of a RlL- str
egy is anycast, where one client aims to select the closagabie
server(s).

Results

Basic evaluation of strategies. The first part of the paper per-
forms an extensive evaluation of churn resulting from a nemab
node selection strategies in five real-world traces. Amaimgcon-
clusions is that replacement strategies yield3&5 x reduction in
churn over the best fixed strategy in the longer traces, tinély
because of their ability to dynamically adapt. This indésathat
for some systems, implementing dynamic node reselectignbaa
worth the trouble.

A more surprising finding is that there is a significant diffiece
in churn among agnostic strategies. One might expect theattsey
nodes using a metric unrelated to churn should perform airtol
RR, since neither strategy uses node-specific stabiligrinétion.
However, it turns out that while PL strategies perform ppdRR
is quite good,typically within a factor of less thag of the best
predictive strategy.

To explain the low churn achieved by RR, we analyze it in a
stochastic model. While with an exponential session tinstrili
bution, RR is no better than Preference Lists, RR’s chum dat
creases as the distributions become more skewed, whick tend
be the case in realistic scenarios.

Applications to systems designin the second part of this paper,
we explore systems in which different designs or paraméitaices
“accidentally” induce a PL or RR-like strategy. Considensiuct-
ing a multicast tree as follows: each node, upon arrival cenune

of its ancestors in the tree fails, querresrandom nodes in the sys-
tem, and connects to the node through which it has the lowest |
tency to the root. Clearly, increasimg better adapts the tree to the
underlying topology, but it also has the nonobvious reshdtthe
tree can suffer from more churn as increasesas node selection
moves from being like RR to being like a PL strategy.

Of course, there will always be a tradeoff between churn and
other metrics. What we aim to illuminate is the nonobviouy wa
which that tradeoff arises. Although this is a simple pheaonon
at heart, to the best of our knowledge it has not been studiduki
context of distributed systems. This framework can expbaavi-
ously observed performance differences in new ways, andg&o
guidance for systems design.

Contributions
In summary, our main contributions are as follows:

e \We provide a quantitative guide to the churn resulting from
various node selection strategies in real-world traces.

e We demonstrate and analytically characterize the perfocma
of Random Replacement, showing that it is better than Pref-

e Using the difference between RR and PL, we demonstrate
and explain performance differences in existing designs fo
the topology of DHT overlay networks, replica placement in
DHTSs, anycast server selection, and overlay multicast tree
construction. In many protocols, simply adding some ran-
domization is an easy way to reduce churn.

This paper proceeds as follows. Section 2 evaluates chuterun
various selection strategies. In Section 3, we give irdnifor and
analysis of RR and PL strategies. Section 4 explores howiffiee-d
ence between RR and PL affects system design. We discuss why
one would intentionally use RR in Section 5 and related wark i
Section 6, and conclude in Section 7.

2. CHURN SIMULATIONS

The goal of this section is to understand the basic effectaiif
ous selection strategies in a wide variety of systems and awvall-
ability environments. To this end, we use a simple model ofich
which will serve as a useful rule of thumb for metrics of interest
in real systems. We show one such metric herghe-fraction of
failed route operations in a simulation of the Chord D34] —
and we will see others in more depth in Section 4.

In Section 2.1 we give our model of churn. We list the node
selection strategies in Section 2.2 and the traces of nadkability
in Section 2.3. Section 2.4 presents our simulation metloggo
Our results appear in Section 2.5.

2.1 Model

In this section we define churn essentially as the rate obuan
of nodes in the system. Intuitively, this is proportionatiie band-
width used to maintain data in a load-balanced storagerayste

System model At any time, each of. nodes in the system is either
up or down and nodes that are up are eitlemuseor available
Nodes fail and recover according to some unknown process. We
call a contiguous period of being upsassiorof a node. At any
time, the node selector may choose to add or remove a node from
use, transitioning it fronavailableto in useor back. There is a
target number of nodes to be in uge= an for somed < a < 1,
which the replacement strategies we consider will matclttka
unless there are fewer thannodes up. The fixed strategies will
pick some static set df nodes, so they will have fewer thanin

use whenever any picked node is down.

Definition of churn. Given a sequence of changes in the set of
in-use nodes, ldl/; be the set of in-use nodes after tile change,
with Uy the initial set. Then churn is the sum over each event of the
fraction of the system that has changed statthat event, normal-
ized by run timeT":

2Py

eventsi

|Ui—1 © Ui
max{|Ui—1], |Ui[}’

C

whereo is the symmetric set difference. We count a failure, and
the selector’s response to that failure, as separate evBotsn a
run of lengthT, if we begin withk nodes in use, two nodes fail
simultaneously, and the selector responds by adding twitable
nodes, churniss (£ + 2). If each of thek in-use nodes fails, one

by one with no reselections, churn;}s(% + 2+ %)

1
= Ink.
T
An important assumption in this definition is that a node whic

~
~

erence List strategies and in many cases reasonably close tdfails and then recovers is of no more use to us than a fresh node

the best strategy. Its simplicity and acceptable perfonaan
may make RR an appropriate choice for certain systems.

This is reasonable for systems with state that is shorttiretative
to the typical period of node downtime, such as in overlaytivast



or:3 [33]. We study the case of storage systems, which have long-
term state, in Section 4.4.

2.2 Selection strategies

Predictive Fixed strategies.When deploying a service on a rea-
sonably static infrastructure such as PlanetLab, one cohdérve
nodes for some time before running the system, and then yse an
of the following heuristics for selecting a “good” fixed séinmdes

to use for the lifetime of the system, whenever they are up:

e Fixed Decent Discard the50% of nodes that were up least
during the observation period. Pidk random remaining
nodes. (Ifk > %, then pick all the remaining nodes and

k, _ n

5 random discarded nodes.)

e Fixed Most Available Pick thek nodes that spent the most
time up.

e Fixed Longest LivedPick thek nodes which had greatest
average session time.

It would be natural to try picking the nodes that result in minimal
churn during the observation period, but unfortunatelg gnoblem

is NP-complete (see [14]). The complexity arises from tlopprty
that the cost of a failure depends on the number of nodes iatuse
the time.

Agnostic Fixed strategies We look at only a single strategy in this
class, which will turn out to be interesting because itsgrenfince
is similar to Preference List strategies:

e Fixed RandomPick k uniform-random nodes.

Predictive Replacement strategies.The following strategies se-
lect a random initial set ok nodes, and pick a replacement only
after an in-use node fails. They differ in which replacemtety
choose:

e Max Expectation:Select the node with greatest expected re-
maining uptime, conditioned on its current uptime. Estenat
this by examining the node’s historical session times.

e Longest Uptime:Select the node with longest current up-
time. This is the same as Max Expectation when the under-
lying session time distribution has decreasing failure.rat

e Optimal: Select the node with longest time until next failure.
This requires future knowledge, but provides a useful com-
parison. Itis the optimal replacement strategy (see [14]).

Agnostic Replacement strategies.

e Random Replacement (RRjck £ random initial nodes. Af-
ter one fails, replace it with a uniform-random available@o

Passive Preference ListGiven a ranking of the nodes, af-
ter an in-use node fails, replace it with the most preferable
available node.

Active Preference ListGiven a ranking of the nodes, after an
in-use node fails, replace it with the most preferable atxdd

Trace Length Mean # Median node’s
(days) | nodesup | mean session time
PlanetLab 527 303 3.9 days
Web Sites 210 113 29 hours
Microsoft PCs 35 41970 5.8 days
Skype 25 710 11.5 hours
Gnutella 25 1846 1.8 hours

Table 1: The real-world traces used in this paper. The last de
umn says that50% of PlanetLab nodes had a mean time to
failure of > 3.9 days.

2.3 Traces

The traces we use are summarized in Table 1 and described here

Synthetic traces: We use session times with POFz) = ab®/(x+
b)* ! with exponent: = 1.5 andb fixed so that the distribution has
mean30 minutes unless otherwise stated. This is a standard Pareto
distribution, shifted units (without the shift, a node would be guar-
anteed to be up for at leaktminutes). Between each session we
use exponentially-distributed downtimes with m@aminutes.

PlanetLab All Pairs Ping [35]: this data set consists of pings
sent evernyl 5 minutes between all pairs 860-400 PlanetLab nodes
from January, 2004, to June, 2005. We consider a hode to be up i
one 15-minute interval when at least half of the pings sent to it
in that interval succeeded. In a number of periods, all orlpea
all PlanetLab nodes were down, most likely due to planned sys
tem upgrades or measurement errors. To exclude these eases,
“cleaned” the trace as follows: for each period of downtima a
particular node, we remove that period (i.e. we considentioe
up during that interval) when the average number of nodesuap d
ing that period is less than half the average number of nogdes u
over all time. We obtained similar results without the clegrpro-
cedure.

Web Sites [2]: This trace is based on HTTP requests sent from
a single machine at Carnegie Mellon 189 web sites everyl0
minutes from September, 2001, to April, 2002. Since theoalg a
single source, network connectivity problems near thecorasult
in periods when nearly all nodes are unreachable. We att@anpt
remove such effects using the same heuristic with which eened
the PlanetLab data.

Microsoft PCs [7]: 51,662 desktop PCs within Microsoft Cor-
poration were pinged every hour f85 days beginning July 6,
1999.

Skype superpeers [15]A set of 4000 nodes participating in the
Skype superpeer network were sent an application-level @iery
30 minutes for about 25 days beginning September 12, 2005 As
the web sites trace, there are a number of short periods whag m
nodes appear to fail, due to network problems near the measur
ment site.

Gnutella peers [31]: Each of a set of 17,125 IP addresses par-
ticipating in the Gnutella peer-to-peer file sharing netioas sent
a TCP connection request every 7 minutes for about 60 hours in
May, 2001. A host was marked as up when it responded with a
SYN/ACK within 20 seconds, indicating that the Gnutella lagp
tion was running. The majority of those hosts were usuallyrdo

node. When a node becomes available that's preferable to (S€€ Table 1).

one we're using, switch to it, discarding the least preferab
in-use node.

In this section, we will assume a randomly ordered prefedist
chosen and fixed at the beginning of each trial.

2.4 Simulation setup

We tabulate churn in an event-based simulator which presess
transitions in statedown available andin usg for each node.
We allow the selection algorithm to react immediately aéach
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Figure 1: Churn (left) and fraction of requests failed in Chord (center) for varying «, with fixed & = 50 nodes in use and the synthetic
Pareto lifetimes. Right: Chord in the PlanetLab trace (one tial per data point).
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Figure 3: Churn of Random Replacement relative to other straegies. The key at right applies to all three plots.

change in node state. This is a reasonable simplificatioagphi-
cations which react within about 7 minutes, since the tinteveen
pings used to produce the traces is at least this much.

We also feed the sequence of events (transitions to or frem th
in usestate) into a simple simulator of the Chord protocol incllide

fraction of requests failed in Chord, in the synthetic anahetLab
traces. In the latter case, we vary the number of nodes irkuse
rather tham, which results in more failures &sgrows since route
lengths increase a3(log k). Not shown is that RR results 513%
lower mean message latency in Chord in the PlanetLab traee. W

with the i3 [33] codebase. Events are node joins and failures and will see how churn affects other systems in Section 4.

datagrams being sent and received. Datagram delivery is-exp
nentially distributed with meaf0 ms between all node pairs with
no loss (unless the recipient fails while the datagram isigint).
Once per simulated second we request that two random DHTsnode
v1, v2 each route a message to the owner of a single randori.key

The trial hadailed unless both messages arrive at the same destina-

tion. Failure due to message loss was about an order of nuagnit
more common than failure due to inconsistency (the mesdages
ing delivered to two different nodes).

In all cases, we split each trace in half, train the fixed sgigs
on the first half, simulate the strategies on the whole trace,
report statistics on the second half only. All plots use asi&0
trials and showd5% confidence intervals unless otherwise stated.
For the traces with more thai®00 nodes, we sample)00 random
nodes in each trial.

In the real-world traces, the parametatoes not directly control
system size for the fixed strategies, since some nodes htredexl
downtimes. To provide a fairer comparison, we plot perfaroga
as a function of thaverage number of nodes in use over tican-
trolled behind the scenes by varyihgReplacement strategies have
an advantage that this metric doesn’t capture: the numbeodds
in use is exactly: as long as> k nodes are up.

2.5 Results

The results of this section are shown in Figures 1-4. Note tha
for clarity in the plots, we have shown the Preference Lisitsgies
separately (Figure 4).

Some basic properties

Figure 1 shows churn in the synthetic Pareto session times as
function of o with fixed k, so thatn = k/« varies. Here all fixed
strategies are equivalent: since all nodes have the same seea
sion time, it is not possible to pick out a set of nodes thavissts-
tently good. We can also see that Random Replacement istolose
Max Expectation whem is not small. As one would expect, per-
formance is best whets < 1. In this caseMax Expectation does
much better than RR intuitively because it finds the few novids
very long time to failure.

Figure 1 also demonstrates that churn is roughly propatitm

Benefit of Replacement over Fixed strategies

In the two peer-to-peer traces, the best fixed strategieshnthe
performance of the best replacement strategies, perhagesthiese
traces are shorter than the others (Table 1). In any casd Sirae-
gies are less applicable in a peer-to-peer setting due wytiemic
population.

In the other three traces, the best replacement strateffézsao
1.3-5x improvement over the best fixed strategy, depending on
and the trace. This suggests that dynamically selectingséar
a long-running distributed application would be worthwehithen
churn has a sufficient impact on cost or service quality.

In the PlanetLab trace, the fixed strategies are partigujsror.
This is primarily due to a period of uncharacteristicallgtiichurn
from late October until early December, 2004, coincidingiwvthe
PlanetLab V3 rollout. During this period, fixed strategiesllan
order of magnitude higher churn than at other periods, wthige
replacement strategies increased by only about 50%. WHides
impressive on the part of the replacement strategies, tltoeitpe-
riod may not be representative of PlanetLab as a whole. iResty
the simulation to thé-month period after the rollout (Figure 2(b)),
the smart fixed strategies offer some benefit, and theredskgs
aration between strategies in general. However, all of ¢ipéace-
ment strategies are still more effective than the best fikedeg)y.

Agnostic strategies

Figure 3(a) shows the churn of Random Replacement divided by
the churn of Max Expectation, the overall best strategygiothan
Optimal, which requires future knowledge). As in the sytithe
distributions, RR’s relative performance is worse for drkabut is
usually within a factor o2 of Max Expectation.

Figure 4 illustrates the general behavior of the Preferdrise
strategies via the PlanetLab trace. Active PL is similarand
worse than, Fixed Random. Intuitively, this is because istridite-
gies pay for every failure that occurs on a fixed setcafiodes.
Additionally, according to our definition of churn, Active_Pays
to add preferred nodes as soon as they recover. Passive &hésc
more similar to Fixed Random &sincreases. While it doesn’t pay
for every failure on the tog nodes, it is usually using those nodes
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and pays for most of the failures.

Figures 3(b) and (c) show churn under the Passive and Active P
strategies, respectively, divided by the churn of RR. RReisagally
1.2-3x better than Passive ad-10x better than Active PL.

In the next section, we give more precise intuition for — and
analysis of — the differing performance of RR and Preferdrise
strategies. In Section 4 we will show how that differenceet
system design.

3. ANALYSIS

Why does picking a random replacement for each failed node
produce much lower churn than using a fixed random set of nodes
or the topk nodes on a preference list? We answer that question
within a stochastic model defined in Section 3.1. We giveitiiatu
for why Preference List strategies are as bad as Fixed Raiom
Section 3.2, and why RR does better in Section 3.3.

Our main analytical results are in Section 3.4. We derivesRR’
expected churn rate, show that its churn decreases as thierses
time distributions become more skewed, and show that ifales
have equal mean session time, RR has no worse than twice th
churn of any fixed or Preference List strategy. However, éir¢h
are very few nodes with high mean session time, RR can be muc|
worse.

3.1 Stochastic model

We use the following renewal process. For each nodthere is
a distribution of session times with given PDFand meanu;. At
time 0 all nodes are up. Each node draws a session finfeom
its distribution independently of all other nodes, fail$iate ¢4, re-
covers instantaneously, draws another sessiondinfails at time
£1+/> , and so on until the end of the run at some given tifn&\Ve
will be interested in the expected churn’Bs— oo. (If instanta-
neous recovery seems unrealistic, we note that the analyRR is
identical in the model that each node has only a single sgsaiml
the total number of nodes is held constant by introducingeahfr
node after each failure.)

To simplify the exposition, we will assume all nodes havalequ
meany unless otherwise specified.

3.2 Fixed and Preference List strategies

Fixed strategies are very easy to analyze in this model. eSinc
nodes recover instantaneously, our definition of churncesluo
% times the number of failure%(for each failure an(% for each
recovery, normalized by tim&). AsT — oo, the number of

failures on any node approaches its expected vdlyg, so the
total number of failures on thg selected nodes approach@f.

Thus all fixed strategies result in expected chggn- ZE =2/,

Now consider Passive PL and suppdsés the set ofk most
preferred nods. Like fixed strategies, each failure of some node
v € S causes us to pa{T for the failure and replacement. Since
recovery is instantaneous, the next tiseme othemode fails,v
must be its replacement (at any time there will be at most ode n
in S not in use). Ask grows, the rate of failures of in-use nodes
grows, so we switch back temore and more quickly. In particu-
lar, the probability that we switch back tobefore its next failure
approached. Thus, for largek, Passive PL pays for nearly every
failure on{v1, ..., v} and its churn approacheg . also.

Active Preference is similar, but it pay;;éf— to switch back ta
after its recovery, yielding churay ..

3.3 Intuition for Random Replacement

RR’s good performance is an example of the classic “waiting
time paradox”. When RR picks a nodg after a failure, the re-
placement’s time to failure (TTF) isot simply drawn from the
session time distributiorf;. Rather, RR is (roughly) selecting the
current session of a random node. This is biased towards longer
sessions since a node spends longer in a long session thaharnta
one.

Alternately, consider some node in the system. As it progeed
through a session, the probability that it has been picke@RRy
increases, simply because there have been more times thas it
considered as a potential replacement. Thus, nodes witfeton
uptimes are more likely to have been picked. And for realidis-
tributions, nodes with longer uptimes are less likely tbgabn.

But RR does very badly when stable nodes are rare. Suppose
k = 1 and all nodes have exponential session times, one with mean
r > 1 andn—1 with meanl. When RR selects a node, its expected
time to failure ist (r) + 2=1(1) ~ 1 whenn > r, so its churn is
2. But the best fixed strategy has mean T/T&nd churr2/r.

A rigorous and general analysis of RR takes some more work
and is the subject of the next section.

€3.4 Analysis of Random Replacement
h We now derive RR’s churn rate in terms of the session time dis-

tributions anda, assuming large. andT" but not assuming equal
means (Theorem 1), and show that the analysis matches siomsla
even forn = 20 (Figure 5). From this we show that the churn of
RR decreases as the distributions become more “skewedblCor
lary 1). We will define this rigorously, but as an example, Pageto
distribution becomes more skewed as the exponent parameéer
creases [1]. Finally, we show that for any session distidinst that

have equal mean, RR has at most twice the expected churn of any
fixed or Preference List strategy (Corollary 2).

To simplify the analysis, we assume nodes belong to an arbitr
ily large constant numbet of groups ofn/d nodes, such that the
nodes within each grouphave the same session time distribution
fi. Additionally, our analysis assumes that the session time dis-
tributions have the property that the system converges tealg
state, in the following sense.

DEFINITION 1. (Stability) LetC' be the churn rate and; be a
session time of nodechosen uniformly at random over all sessions
in a run of lengthl". Let random variables(; and R; be the length
of L; and the number of reselections duridg. Finally, letc =
4t - E[C] be the expected rate of reselections. Then the session
time distributionsfy, . . . , f4 are stableif they have finite mean and
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Figure 5: Simulation and analysis of churn with varying sesen

time distribution, n = 20, and o = 3.

variance,E[C] > 0, andVi,
Pri(l—e)eX; <R < (14e)eXi]>1—¢
Ve > 0, a € (0, 1), and sufficiently large: andT".

This property is trivially true in the (uninteresting) caet all
nodes have exponentially distributed session times withnaon
mean. We conjecture that in fact it is true quite generallyjur O
main analytical result is the following.

THEOREM 1. Let C be the churn in a trial of lengtl” using
Random Replacement. If the node session time distributins
are stable andv € (0, 1), then asn, T' — oo, E[C] is given by the

unique solution to
2 .1 a
E[C] = = —(1-E ————F[C]- L; ,
= 35 (-l {-ptgEa-1])
where random variabld.; has PDFf;.

PROOF See[14]. O

Figure 5 shows agreement of this analysis with a simulation f
n = 20 and Pareto-distributed session times with PPE) =
ab®/(x+b)**', asin Figure 1. We vary and pickb so that = 1.
Even though the analysis assumes laigé differs from the sim-
ulation by< 1.5% fora > 1.5. As a approached, convergence
time in the simulation became impractical. ko< 1, f(z) has
infinite variance and does not satisfy the conditions of Téaenl.

We next characterize the churn of RR in terms of how “skewed”

the session time distributions are, in the sense of the lzgpartial
order:

DEFINITION 2. Given two random variableX', X’ > 0 with
CDFs F' and F’, respectively, we saX’ = X (“ X’ is more
skewed than¥™) when E[X’] = E[X] < oo, the PDFs ofX and
X' exist, and for ally € [0, 1],

E[X'|X >2] > E[X|X >a4],
wherez’ = F'~'(y) andz = F~'(y).

Note thatz’ andz are theyth percentile values ok’ and X, so
intuitively this definition compares the tails of the twotdilsutions.
The Lorenz partial order is consistent with variance, insbkase
that X’ = X implies vafX’) > var(X).

Our first corollary states that RR’s expected churn decsease
the session time distributions become more skewed.

COROLLARY 1. LetC and(C’ be the expected churn of RR as
given by Theorem 1 under session time distributigf$ and (f;),
respectively, and fixed. If f/ = f;foralli € {1,...,d}, then
E[C'] < E[C].

Thus, for fixed mean session times, the least skewed disorbu-
essentially the case that session times are determiniggcmal to
their mean — is the worst case for RR. In the special case that a
mean session times are equal, we have the following:

COROLLARY 2. If the session time distributions are stable and
have equal mean, RR’s expected churn is at most twice thetexipe
churn of any fixed or Preference List strategy.

The proofs appear in [14].

4. APPLICATIONS

We have seen that Random Replacement consistently outper-
forms Preference List strategies (Section 2.5) essenti@tause
it takes advantage of skewed session time distributionsti(@e3).

In this section, we study how these two classes of strategie®
up in real systems.

We begin in Section 4.1 with a simple example, anycast server
selection, in which there are natural analogies for stiategn the
spectrum between RR and PL, and dolagswork (in terms of
optimizing latency) decreases churn. We also study howkbuic
RR converges to its steady-state churn rate.

In Section 4.2 we discuss how two classes of proposed DHT
topologies behave like Active PL and RR, and show that rarziom
ing the Chord topology decreases the fraction of failed lgpskby
29% in the Gnutella trace.

In Section 4.3, we show how strategies similar to RR and PL oc-
cur in overlay multicast tree construction. Our result® @sovide
further insight into an initially surprising effect obsed/by [32],
that a random parent selection algorithm was better thamtaiice
longest-uptime heuristic.

Finally, Section 4.4 explores two strategies for placinglioas
in DHTs. Although a difference in their associated maintea
bandwidth had been previously observed, we show that paineof
performance difference is due to behavior close to RR in and,

PL in the other.

4.1 Anycast

To give a simple instantiation of preference list and RRtstra
gies, consider an endhost which desires to communicateanith
of a set ofn acceptable servers. The endhost begins by connecting
to arandom server. Whenever its current server fails, diobta list
of them servers to which it has lowest latency, perhaps by utiliz-
ing an anycast service such as [3,12,38], and connects tmama
one of thesen. Additionally, the endhost periodically probes for a
closer server that may have newly joined, switching to susdreer
after some random delay [f, ¢] following the join.

We simulated the resulting number of failures in a simpleusim
lator with events at the level of node joins and failures,raSec-
tion 2. We do not count a switch as a failure. Latencies were
obtained from a synthetic edge network delay space gemesfto
Zhang et al [39], which is modeled on measurements of latency
between DNS servers. The large availability traces wergkam
down t02000 nodes.

Figure 6(a) depicts the tradeoff between server failure aad
latency that results from various choices of the parameteend
t in the Skype trace. The upper-left point has= 1 minute and
m = 1, and corresponds to an Active PL strategy.tAs co, we
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Figure 6: Anycast simulation results.

move to a Passive PL strategy, and failure rate decreasesiglly
56% (46-72% in the other traces). Increasimg results in an RR
strategy and decreases failure rate by a furtt#t (13-21% in
the other traces). This latter decrease is modest since everdy
selecting one node at a time (compare with Figure 3(b) with 1
nodes in use). However, this may be useful if, for exampleeamm
latency 0f40 ms were acceptable to the application in question. We
also simulated a hybrid strategy which ugee= co and selected
the replacement server which minimized latency — (1 — w) -
uptime. As w decreases from to 0, the strategy moves from
Passive PL to Longest Uptime. In the Skype trace, this anfuiti
uptime information reduces failure rate by ab@d®6 below the
randomized strategy withh = 32.

Of course, the right point in the tradeoff space depends en th
particular application, but these results show that we lshexpect
stability to suffer as latency is better optimized, and @vsely that
doing a littlelesswork is an easy way to reduce the failure rate.

So far we have assumed an endhost which continually selected

a server over the entire trace. Suppose now that the endhost a
rives at a random time, uses RR server selection, and degftets

a given session length Figure 6(b) shows that whehis small,

the endhost experiences the mean server failure rate, astiveA
PL. Intuitively, the endhost departs before it makes fué o the
session of the server it selected. The failure rate congeagé
approaches the mean session length of a RR-selected saever,
creasing by2.3x-5.1x depending on the trace.

As an example, some Skype peers which are behind NATs se-

lect superpeers through which to relay voice calls. S of
relayed Skype calls last less thaé minutes [15], if the peers se-
lect relays randomly, these calls would see roughly the nsean
perpeer failure rate (one failure evetg hours). However, one
could imagine designing the superpeer network to maintagt af
randomly selected “super-superpeers” through which rinpgion-
sensitive voice calls are routed when possible. Such anlesigld
result in a failure rate similar to that of a persistent ersdls@ssion
(one failure everyt2 hours).

4.2 DHT neighbor selection

In a DHT, each node is assigned an identifieid(v) in the
DHT’s keyspace. Ownership of the keys is partitioned amdreg t
nodes. Each node in a DHT maintains links to certain otheesiod
as a function of the IDs of the nodes. Generally these comean t
types: sequentialneighbors, such as the successor list in Chord:
each nodev maintains links to aboulog n nodes whose IDs are
closest tov's. These are used to maintain consistency of the par-

1min 10minlhr 6hr 1d
Endhost session length

(b) Convergence of RR

32 64 128 256 512

Average number of nodes up

1w 4w 1year 1024

Figure 7: DHT neighbor selection simula-
tion in Gnutella trace.

titioning of the keyspace among nodes. Second, nodeslbage
distanceneighbors, such as the finger table in Chord, to provide
short routes between any pair of nodes. We will compare tfro di
ferent ways of selecting long-distance neighbors.

Deterministic and randomized topologies

In the first class of topologies, used in Chord [34], CAN [26],
and others [17, 25], each nodemaintains links to the owners
of certain other IDs which are a deterministic functionud ID.
For example, Chord's keyspace {8,...,N — 1}, where N =
2160 and nodev maintains links calledingersto the owners of
id(v) + 2" (modN) for eachi € {0, ..., (log, N) — 1}. This re-
sults in links to©(log n) distinct nodes, where is the number of
nodes in the system. Each node periodically performs loafip
erations to find the current owner of the appropriate key &ahe
of its fingers, updating its links as ownership changes duette
arrivals and departures. In Chord, a keys owned by the node
whose ID most closely follows in the (modular) keyspace. Thus
the choice of each fingérfor a nodev can be described as an Ac-
tive Preference List strategy with = 1 nodes in use, where the
preference ordering ranks a nodeaccording to the distance from
id(v) + 2 toid(w).

In the second class of topologies, links are chosen randomly
Symphony [22] was the first design to explicitly choose rando
neighbors, but some other topologies have enough undgrlgr-
ibility [16] that trivial modifications of the original degh allow
them to choose from many potential long-distance neighbieos
example, a natural way to randomize CHudisdto select theth fin-
ger as the owner of a random keyfinl(v)+2, . . ., id(v)+21}.
When that link fails, we can choose a new random neighboren th
same range. Unsurprisingly, this strategy is essentidly R

Results and implications

We simulated these two variants of Chord using the simultolr
methodology described in Section 2.4. In each trial we sachpl
random nodes from the Gnutella trace and simulated a run@fdCh
over thosen nodes, with deterministic and random neighbor selec-
tion. Since most of the nodes are usually down, we plot resdt

a function ofn, the average number of nodes up. Figure 7 shows
that with7 ~ 850, the randomized topology ha9% fewer failed
requests due to the lower finger failure rate. The randontizeal-

ogy also had very slightly longer routes.§% longer fornn =~ 27

but decreasing to jusL8% longer forn &~ 850).

1This topology was studied in [23] in the context of route léng
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Figure 8: Multicast simulation results.

Leonard et al [19] analyzed the resilience of several P2P sys m random suitable nodes. A nodessitablefor v when it is con-

tems including Chord in a stochastic model, deriving thecexgd
time until a node is disconnected from the network. The analy
sis assumed that the selection of a neighbor is independetst o

nected to the tree and has available bandwidth for anothkt. ch
The node then picks one of thosenodes as its parent in the tree,
according to one of several strategies we will describe nmbaniy.

age — essentially an RR strategy. We have now seen that Chord, Whenever a node fails, each of its descendants experiendas a

as well as the other deterministic DHTS, in fact follow a Piast
egy. Since time-until-disconnection depends superligear fin-
ger failure rate, the assumption of [19] would result in anfigant
overestimate of the resilience of the standard Chord pobt@s
well as the other deterministic DHTS.

Several advantages of flexible, non-deterministic topelgre
well known, most notably the ability to use proximity neigiise-
lection to reduce latency [16] —which, depending on the am@n-
tation, may result in a latency-based PL strategy. In thekwroost
similar to this section, Ledlie et al [18] used Longest Uifor fin-
ger selection. In the same Gnutella trace, their simulatgowed

terruptionin the hypothetical multicast stream, and repeats the join
procedure. Thus a failure near the root may disrupt the tstreof
a large subtree.

We use three strategies for selecting the parent amongnthe
suitable nodes: (1) the node witlongest Uptime(2) the node at
Minimum Depthfrom the root; or (3) the node which would result
in theMinimum Latencylongv’s path through the tree to the root.
The first two strategies withh = 100 were also simulated in [32],
in traces which had peak sizes1gf000-80, 000 nodes up.

Unfortunately, we could not test under the traces and nodd-ba
width bounds used in [32] since their data is not publiclyilatde.

a 42% reduction in maintenance bandwidth when compared to a Instead, we use the traces of Section 2.3, latencies from@ba

proximity-optimizing neighbor selection strategy, attetithe cost
of increasing latency b§0%. In contrast, what we highlight here is
thatrandomized topologies are inherently more stable thanrdete
ministic ones, even without explicitly picking neighboaséd on
their expected stability.

4.3 Multicast

In this section we simulate how preference list strategiesas-
fect the stability of overlay multicast trees.

Simulation setup

We closely follow the simulation scenario of Sripanidkudclet
al [32]. We deal with a single-source multicast tree, whasa r
is always present without failure. When a nadpins, it contacts

al [39] as in Section 4.1, and uniform node capacities: eacen
accepts at mosi = 4 children unless otherwise stated. In [32],
after a node fails, its descendants which are contributingeme-
sources are allowed to rejoin before freeriders. Since wéamo-
geneous capacities, we have nodes rejoin in random ordellysi

a minor difference is that we have a node quenguitable parents
and pick the best, rather than queryingnodes, filtering out the
unsuitable ones, and picking the best.

We report the total number of interruptions. Additionaliye
periodically sample the mean node depth (number of hops from
each node to the root) and mean latency through the tree to the
root. We take the mean of these metrics over all samplesmwithi
each trial, and then over all trials.



Results

We begin by discussing the Min Latency strategy. We will then
confirm and offer additional interpretation of two resulfs[82]
regarding the Min Depth and Longest Uptime strategies.

Figures 8(a) and 8(b) show that optimizing latency both $elp
and hurts the number of interruptions. The case= 1 is random
parent selection. As we begin increasing latency to the root
decreases (Figure 8(d)) but there is a side effect of reducee
height (Figure 8(c)), which reduces the interruption r&e% in
Gnutella,19% in Skype) because there are fewer opportunities for
failure along a node’s path to the root. But for > 4 the mean
node depth is essentially constant and the trees becomstédss,
with interruptions increasing2% in Gnutella an&6% in Skype.

The interior structure of the trees reveals the proximatseaf
this instability. Figure 8(e) shows that smalleractually results in
more stable nodes closest to the root, where failures dffeanost
descendants, while: = n does a poorer job of getting the best
nodes near the root.

We claim that the ultimate cause of this increase in failate r
for the Min Latency strategy is due to the Preference Listaff

Replica management strategies

In DHT-based storage systems, nodes are assigned identife)
in a keyspace. Each stored file or objeds also assigned a key
key(o). The node whose identifier most closely followsy (o)
serves as the object’s coordinatorroot (o). For redundancy,
some numbetk: of replicas ofo are stored on some set of nodes.
TheRoot Sestrategy for placing those replicas is used in slightly
varying forms by DHash [8], PAST [30], Bamboo [29], and Total
Recall [5], among others: put replicas on theodes whose IDs
most closely followkey(o), or the “root set”. Specifically, when a
node in the root set fails, we add the next closest to the aasjieg
one replication; when a node joins with an ID that places thim
root set, areplica of is sent to it. In both cases a file transfer is not
necessary if the node in question already has the file. Thisrsc
when a node returns afterteansientfailure, such as a network
outage, which does not affect files stored on disk.
TheRandonstrategy is used by Pond [28], Total Recall [5], and
Weatherspoon et al [37]. The roeto) stores a directory of all
available replicas of, which may be on any node in the system.
(The directory is assumed to be small relative to the sizenafta

The case is not as clear as in the previous examples: even withject replica, so the cost of replicating it — with, for exampthe
m = n the trees produced are not deterministic since the nodes re-Root Set strategy — is negligible.) Random has two parameter

join in random order after an ancestor fails. However, atgisihe
< d children of some node in the tree. After one of the children
fails, eventually a new child will join. Withn = n the new child
is likely to be a nearby node, while withh = 1 the new child is
selected more like RR. Then withh = 1 we should expect the
children ofv to be more stable, and henets grandchildren will
experience fewer interruptions.

To test this hypothesis, if the nodes had session time lolistri
tions in which RR performedvorse than PL strategies, perfor-
mance shouldmproveasm — n. By Corollary 1, such an (un-
realistic) bad case is when session times are essentiailstamt,
e.g. uniformin[9, 11]. Figure 8(f) shows that in this case, interrup-
tion rate is indeed a monotonically decreasing functiomof

We now discuss two results of Sripanidkulchai et al [32]sEin
tests using a fixeth, they found that Min Depth best optimized sta-
bility among the strategies they tested, which is true introases
we tested (e.g. all of Figure 8(a)). Interestingly, we findtteven
Min Depth can benefit from some randomization as well, witisle
than half the interruption rate at = 4 thanm = n in Skype.
This effect also appeared in the Microsoft PCs trace and éssel
extent in PlanetLab, but not in Gnutella or Web Sites.

Second, Sripanidkulchai et al [32] found it surprising thiz
Longest Uptime parent selection performed more poorly than
dom selectionsz = 1) in many cases, and they determined the
cause was that it built much taller trees. We obtained siméa
sults in Figure 8(a,b) for sufficiently larga. However, we also
find that using Longest Uptime, the nodes near the root are les
stable than in then = 1 case (Figure 8(e)).

In fact, neither Min Depth nor LU optimizes exactly the right
metric. Min Depth ignores the stability of nodes on the patmf
the parent to the root, and LU ignores the length of that paditlae
stability of all ancestors except the parent. Thus, givendisults of
this paper, it should not be surprising that random seledtidnich,
rather than being agnostic, does a decent job optimizinghfer
right metric) can be better than the other heuristics.

4.4 DHT replica placement

In this section we compare two common strategRent Seaand
Randomfor managing file replicas in distributed hash table-based

k and f € (0,1]. Repair is only initiated when the number of
available replicas falls beloyf - k], at which point new replicas
are created untit are available. This “lazy replication” provides a
buffer so the system reacts to transient failures less émwrity

Simulation setup

It has been previously observed [5, 37] that Random sigmifiga
outperforms Root Set, and this has been attributed to a nuafibe
disadvantages of Root Set. Root Set might “forget” abouicep
that end up outside the root set; it replicates when nodegearr
rather than only in response to failures; and in some impieae
tions it lacks the lazy replication threshagfd

Our goal is to quantify the impact of another difference: the
choice of node on which to place a replica once it is createml. T
compare the strategies on equal footing, we modify the Rebdt S
strategy so that it monitors all replicas in the system, dagsepli-
cate in response to node joins, and uses the lazy replicdiesh-
old f. The remaining difference is that Root Set places each new
replica on the first node available node in the root set Passive
PL) while Random follows RR node selection.

As before we use a simulator with events at the level of node
joins, node failures, and file replications. Since our tsade not
include information about data loss associated with faguwe as-
sume no data loss, which provides a lower bound on the pemhane
failure rate. We assume files are written to the system até¢he b
ginning of each trial. We measure the mean number of reficsit
used to maintain each file after the initial write.

Results

Figure 9 compares the two strategies wjthe {1,2,1} in two
representative traces, PlanetLab and Gnutella; for{2, . .., 20}.
(Note that each “replica” may be an erasure-coded fragnfeheo
file, sok = 20 is reasonable; in fact, Pond udes- 32.) At f =1
andk = 20 in Gnutella, Random requireX% fewer replications
than Root Set, and in fact Random with= 1 is as good as Root
Set with f = %. However, this difference diminishes gss de-
creased, and the strategies differ little in PlanetLab.

Several limitations of the traces likely underestimate lthreg-
term benefit of Random over Root Set. Once transient failares

storage systems. The metric we study is the rate at which newlargely masked, the strategies compete at the level of penta

replicas are created, which directly affects maintenamacelwidth.

failures. However, none of the traces is long relative topt@ena-
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Figure 9: Replica placement simulation results.

nent failure rate. For example, among Gnutella nodes thet we the most stable nodes are sought after simultaneously bijpheul
at some point in the first half of the trace, only 33% were absen agents, such as peers in a P2P system or users in a shared infra

in the second half, and that fraction was smaller in the difeees. tructure like PlanetLab?

Additionally, we have underestimated the permanent faitate by The parametet, the fraction of nodes needed, gives a way to

assuming no data loss. As a consequence, it is likely thatiétan analyze the total churn experienced by all users: we candake

has not yet converged in these simulations (see Section 4.1) be the utilization of the distributed system as a whole. Hare
Recently, Tati and Voelker [36] observed an effect of thedvem our results do not address fairness between users, whichawve |

strategy: nodes with higher average availability will beested to to future work.
receive objects more frequently, and will also likely havghler
average availability in the future. This effect is closedyated to 6. RELATED WORK
RR (compare with the intuition in Section 3.3) and undoulgted . . . .
. . X In the special case of instantaneous recovery times, tlseae i
contributes to the difference between strategies that we bh- . d b del of ch
served. Separating these effects, as well as obtainingrluktta on precise correspondence etween our model of churn (Sém.l‘)n
) . ) ! . and page replacement in a two-level memory system: eachipage
permanent failures, remains an interesting area of fugsearch. o . :
a machine; the pages that avat in cache are the set of in-use ma-
chines; and a page access corresponds to a node failuresaaug-in

5. DISCUSSION taneous recovery. Churn is thus twice the number of pagésfaul
What we call Longest Uptime is then exactly the pervasivestea
When would one use Random Replacement? Recently Used (LRU) policy, and Random Replacement is known
As we have seen in Section 4, RR appears in a variety of real sys PY the same name. _ )
tems. Our results are thus useful in better describing thiope There has been a substantial amount of work on analysis ef pag
mance of those systems. replacement algorithms including LRU and RR; see e.g. [Patd
However, if a system designer were intentionally implerimgnt ~ the discussion in [10]. Stochastic analysis of page reptect al-
node selection to minimize churn, the results of Sectiono2vshat gorithms has generally been limited to the “independereresfce
Longest Uptime offers somewhat better performance. Isthay model” in which one pagé” is accessed in each timestepvhere
case in which one would intentionally pick RR? the (P;) are i.i.d. This corresponds to the special case of our model

There are several cases in which RR would be easier to imple- in which node session times are exponentially distributeth(pos-

ment and may offer a better tradeoff between churn and systemSiPly unequal means). Thus a major difference is that ourahod
complexity. For example, when failures are due to the nektwior analyzed in Section 3 is not limited to memoryless sessioedi
may be hard for a nodeto determine when it has “failed” and thus ~, L0ngest Uptime is a common heuristic which has been studied
report its uptime. If notices a dropped connection to some other N contexts including DHT neighbor selection [18], selegtsuper-

nodew, this may be due to the departurewfor a problem onthe ~ P€€rs [13], and selecting parents in an overlay multicast f82].

network path between andw. The Accordion DHT [20] selects neighbors by computing the-co
Even when it is easy to determine the uptime of a node, there ditional probability that a node is currently up given whemwas

may be incentive for nodes to lie about their uptime to oblbaitter last contacted and how long it was up before that, assumisg se

service, such as faster file transfer in a P2P file distribusigstem. sion times fit a Pareto distribution with learned parametstisk-

In this case, RR would be more robust to misbehavior than LU, €ns [24] used sophisticated statistical techniques toiqiredure
Finally, if we are dealing with a protocol that has alreadgie ~ N0de uptime, and experimented with placing file replicashoid

standardized, there may be no support for querying a noge’s u  ON SUccessors with greatest predicted time to live.

time. A client could potentially implement RR node selegtie- to

pick DNS servers, for example — without support from theprot 7. CONCLUSION

col and still obtain reasonable stability. This paper has provided a guide to performance of a range of

node selection strategies in real-world traces. We havdiglged

What about load balance? and explained analytically the good performance of Rand@n R

In all effective node selection strategies, including RBbke nodes placement relative to smart predictive strategies, andtivel to

are used more on average. What performance can we expect wherPreference List strategies. Through the difference inrthetween



RR and PL strategies, we have explained the performancécenpl
tions of a variety of existing distributed systems desigiifiese
results also show that some dynamic randomization is aneagy

to reduce churn in many protocols. An area of future work is to
demonstrate these differences in a deployment of a lartrébdited
system.
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