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ABSTRACT
A pervasive requirement of distributed systems is to deal with churn
— change in the set of participating nodes due to joins, graceful
leaves, and failures. A high churn rate can increase costs orde-
crease service quality. This paper studies how to reduce churn by
selecting which subset of a set of available nodes to use.

First, we provide a comparison of the performance of a range of
different node selection strategies in five real-world traces. Among
our findings is that the simple strategy of picking a uniform-random
replacement whenever a node fails performs surprisingly well. We
explain its performance through analysis in a stochastic model.

Second, we show that a class of strategies, which we call “Pref-
erence List” strategies, arise commonly as a result of optimizing for
a metric other than churn, and produce high churn relative tomore
randomized strategies under realistic node failure patterns. Using
this insight, we demonstrate and explain differences in performance
for designs that incorporate varying degrees of randomization. We
give examples from a variety of protocols, including anycast, over-
lay multicast, and distributed hash tables. In many cases, simply
adding some randomization can go a long way towards reducing
churn.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications; C.4 [Per-
formance of Systems]: Fault tolerance; G.3 [Probability and Statis-
tics]: Renewal theory

General Terms
Design, Theory, Reliability

Keywords
Churn, node selection, multicast, DHT

1. INTRODUCTION
Almost every distributed system has to deal with churn: change

in the set of participating nodes due to joins, graceful leaves, and
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failures. There is a price to churn which may manifest itselfas
dropped messages, data inconsistency, increased user-experienced
latency, or increased bandwidth use [21, 29]. Even in peer-to-peer
systems which were designed from the outset to handle churn,these
costs limit the scenarios in which the system is deployable[6]. And
even in a reasonably stable managed infrastructure like PlanetLab
[4], there can be a significant rate of effective node failuredue to
nodes becoming extremely slow suddenly and unpredictably [27].

In this paper, we study how to reduce the churn rate by intel-
ligently selecting nodes. Specifically, we consider a scenario in
which we wish to usek nodes out ofn ≥ k available. How should
we select whichk to use in order to minimize churn among the
chosen nodes over time? This question arises in many cases, such
as the following:

• Running a service on PlanetLab in whichn = 500 nodes
are available and we would likek ≈ 20 to run the service in
order to have sufficient capacity to serve requests.

• Selecting a reliable pool ofk ≈ 1000 super-peers from among
n ≈ 100, 000 end-hosts participating in a peer-to-peer sys-
tem.

• Choosingk nodes to be nearest the root of an overlay multi-
cast tree, where failures are most costly.

• In a storage system ofn nodes, choosingk nodes on which
to place replicas of a file.

To better understand the impact of node selection on churn, we
study a set of strategies that we believe are both relevant inpractice,
and provide a good coverage of the design space.

At the high level, we classify the selection strategies along two
axes: (1) whether they use information about nodes to attempt to
predict which nodes will be stable, and (2) whether they replace a
failed node with a new one. We refer to strategies that base their se-
lection on individual node characteristics (e.g., past uptime or avail-
ability) as Stability-Predictivestrategies (orpredictive for short),
and ones that ignore such information asStability-Agnostic(or just
agnostic). On the second axis, we use the termFixed for strategies
that never replace a failed node from the original selected set, and
Replacementfor strategies that replace a node as soon as it fails, if
another is available.

Predictive Fixedstrategies are often used in the deployment of
services on PlanetLab, where typically developers pick a set of ma-
chines with acceptable past availability, and then run their system
exclusively on those machines for days or months.Predictive Re-
placementstrategies appear in many protocols that try to dynami-
cally minimize churn. The most common heuristic is to selectthe
nodes which have the longest current uptime [13,18,32].



Agnosticstrategies can frequently describe systems which do not
explicitly try to minimize churn. The simplest form ofAgnostic Re-
placementstrategy isRandom Replacement (RR): replace a failed
node with a uniform-random available node. Another important
form of agnostic replacement strategy is aPreference List (PL)
strategy, which arises as a result of optimizing for a metricother
than churn: rank the nodes according to some preference order, and
pick the topk available nodes. Note that we use the term PL specif-
ically in the case that the preference order isnot directly related to
churn (e.g., latency), and is essentially static. Such PL strategies
turn out to describe many systems well. One example of a PL strat-
egy is anycast, where one client aims to select the closest available
server(s).

Results
Basic evaluation of strategies. The first part of the paper per-
forms an extensive evaluation of churn resulting from a number of
node selection strategies in five real-world traces. Among our con-
clusions is that replacement strategies yield a1.3-5× reduction in
churn over the best fixed strategy in the longer traces, intuitively
because of their ability to dynamically adapt. This indicates that
for some systems, implementing dynamic node reselection may be
worth the trouble.

A more surprising finding is that there is a significant difference
in churn among agnostic strategies. One might expect that selecting
nodes using a metric unrelated to churn should perform similar to
RR, since neither strategy uses node-specific stability information.
However, it turns out that while PL strategies perform poorly, RR
is quite good,typically within a factor of less than2 of the best
predictive strategy.

To explain the low churn achieved by RR, we analyze it in a
stochastic model. While with an exponential session time distri-
bution, RR is no better than Preference Lists, RR’s churn rate de-
creases as the distributions become more skewed, which tends to
be the case in realistic scenarios.

Applications to systems design.In the second part of this paper,
we explore systems in which different designs or parameter choices
“accidentally” induce a PL or RR-like strategy. Consider construct-
ing a multicast tree as follows: each node, upon arrival or when one
of its ancestors in the tree fails, queriesm random nodes in the sys-
tem, and connects to the node through which it has the lowest la-
tency to the root. Clearly, increasingm better adapts the tree to the
underlying topology, but it also has the nonobvious result that the
tree can suffer from more churn asm increases, as node selection
moves from being like RR to being like a PL strategy.

Of course, there will always be a tradeoff between churn and
other metrics. What we aim to illuminate is the nonobvious way in
which that tradeoff arises. Although this is a simple phenomenon
at heart, to the best of our knowledge it has not been studied in the
context of distributed systems. This framework can explainprevi-
ously observed performance differences in new ways, and provide
guidance for systems design.

Contributions
In summary, our main contributions are as follows:

• We provide a quantitative guide to the churn resulting from
various node selection strategies in real-world traces.

• We demonstrate and analytically characterize the performance
of Random Replacement, showing that it is better than Pref-
erence List strategies and in many cases reasonably close to
the best strategy. Its simplicity and acceptable performance
may make RR an appropriate choice for certain systems.

• Using the difference between RR and PL, we demonstrate
and explain performance differences in existing designs for
the topology of DHT overlay networks, replica placement in
DHTs, anycast server selection, and overlay multicast tree
construction. In many protocols, simply adding some ran-
domization is an easy way to reduce churn.

This paper proceeds as follows. Section 2 evaluates churn under
various selection strategies. In Section 3, we give intuition for and
analysis of RR and PL strategies. Section 4 explores how the differ-
ence between RR and PL affects system design. We discuss why
one would intentionally use RR in Section 5 and related work in
Section 6, and conclude in Section 7.

2. CHURN SIMULATIONS
The goal of this section is to understand the basic effects ofvari-

ous selection strategies in a wide variety of systems and node avail-
ability environments. To this end, we use a simple model of churn
which will serve as a useful rule of thumb for metrics of interest
in real systems. We show one such metric here —the fraction of
failed route operations in a simulation of the Chord DHT [34] —
and we will see others in more depth in Section 4.

In Section 2.1 we give our model of churn. We list the node
selection strategies in Section 2.2 and the traces of node availability
in Section 2.3. Section 2.4 presents our simulation methodology.
Our results appear in Section 2.5.

2.1 Model
In this section we define churn essentially as the rate of turnover

of nodes in the system. Intuitively, this is proportional tothe band-
width used to maintain data in a load-balanced storage system.

System model.At any time, each ofn nodes in the system is either
up or down, and nodes that are up are eitherin useor available.
Nodes fail and recover according to some unknown process. We
call a contiguous period of being up asessionof a node. At any
time, the node selector may choose to add or remove a node from
use, transitioning it fromavailable to in useor back. There is a
target number of nodes to be in use,k = αn for some0 < α ≤ 1,
which the replacement strategies we consider will match exactly
unless there are fewer thank nodes up. The fixed strategies will
pick some static set ofk nodes, so they will have fewer thank in
use whenever any picked node is down.

Definition of churn. Given a sequence of changes in the set of
in-use nodes, letUi be the set of in-use nodes after theith change,
with U0 the initial set. Then churn is the sum over each event of the
fraction of the system that has changed statein that event, normal-
ized by run timeT :
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1
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where⊖ is the symmetric set difference. We count a failure, and
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An important assumption in this definition is that a node which

fails and then recovers is of no more use to us than a fresh node.
This is reasonable for systems with state that is short-lived relative
to the typical period of node downtime, such as in overlay multicast



or i3 [33]. We study the case of storage systems, which have long-
term state, in Section 4.4.

2.2 Selection strategies
Predictive Fixed strategies.When deploying a service on a rea-
sonably static infrastructure such as PlanetLab, one couldobserve
nodes for some time before running the system, and then use any
of the following heuristics for selecting a “good” fixed set of nodes
to use for the lifetime of the system, whenever they are up:

• Fixed Decent: Discard the50% of nodes that were up least
during the observation period. Pickk random remaining
nodes. (Ifk > n

2
, then pick all the remaining nodes and

k − n
2

random discarded nodes.)

• Fixed Most Available: Pick thek nodes that spent the most
time up.

• Fixed Longest Lived: Pick thek nodes which had greatest
average session time.

It would be natural to try picking thek nodes that result in minimal
churn during the observation period, but unfortunately this problem
is NP-complete (see [14]). The complexity arises from the property
that the cost of a failure depends on the number of nodes in useat
the time.

Agnostic Fixed strategies.We look at only a single strategy in this
class, which will turn out to be interesting because its performance
is similar to Preference List strategies:

• Fixed Random: Pickk uniform-random nodes.

Predictive Replacement strategies.The following strategies se-
lect a random initial set ofk nodes, and pick a replacement only
after an in-use node fails. They differ in which replacementthey
choose:

• Max Expectation:Select the node with greatest expected re-
maining uptime, conditioned on its current uptime. Estimate
this by examining the node’s historical session times.

• Longest Uptime:Select the node with longest current up-
time. This is the same as Max Expectation when the under-
lying session time distribution has decreasing failure rate.

• Optimal: Select the node with longest time until next failure.
This requires future knowledge, but provides a useful com-
parison. It is the optimal replacement strategy (see [14]).

Agnostic Replacement strategies.

• Random Replacement (RR): Pickk random initial nodes. Af-
ter one fails, replace it with a uniform-random available node.

• Passive Preference List:Given a ranking of the nodes, af-
ter an in-use node fails, replace it with the most preferable
available node.

• Active Preference List:Given a ranking of the nodes, after an
in-use node fails, replace it with the most preferable available
node. When a node becomes available that’s preferable to
one we’re using, switch to it, discarding the least preferable
in-use node.

In this section, we will assume a randomly ordered preference list
chosen and fixed at the beginning of each trial.

Trace Length Mean # Median node’s

(days) nodes up mean session time

PlanetLab 527 303 3.9 days

Web Sites 210 113 29 hours

Microsoft PCs 35 41970 5.8 days

Skype 25 710 11.5 hours

Gnutella 2.5 1846 1.8 hours

Table 1: The real-world traces used in this paper. The last col-
umn says that 50% of PlanetLab nodes had a mean time to
failure of ≥ 3.9 days.

2.3 Traces
The traces we use are summarized in Table 1 and described here.
Synthetic traces:We use session times with PDFf(x) = aba/(x+

b)a+1 with exponenta = 1.5 andb fixed so that the distribution has
mean30 minutes unless otherwise stated. This is a standard Pareto
distribution, shiftedb units (without the shift, a node would be guar-
anteed to be up for at leastb minutes). Between each session we
use exponentially-distributed downtimes with mean2 minutes.

PlanetLab All Pairs Ping [35]: this data set consists of pings
sent every15 minutes between all pairs of200-400 PlanetLab nodes
from January, 2004, to June, 2005. We consider a node to be up in
one 15-minute interval when at least half of the pings sent to it
in that interval succeeded. In a number of periods, all or nearly
all PlanetLab nodes were down, most likely due to planned sys-
tem upgrades or measurement errors. To exclude these cases,we
“cleaned” the trace as follows: for each period of downtime at a
particular node, we remove that period (i.e. we consider thenode
up during that interval) when the average number of nodes up dur-
ing that period is less than half the average number of nodes up
over all time. We obtained similar results without the cleaning pro-
cedure.

Web Sites [2]: This trace is based on HTTP requests sent from
a single machine at Carnegie Mellon to129 web sites every10
minutes from September, 2001, to April, 2002. Since there isonly a
single source, network connectivity problems near the source result
in periods when nearly all nodes are unreachable. We attemptto
remove such effects using the same heuristic with which we cleaned
the PlanetLab data.

Microsoft PCs [7]: 51,662 desktop PCs within Microsoft Cor-
poration were pinged every hour for35 days beginning July 6,
1999.

Skype superpeers [15]:A set of 4000 nodes participating in the
Skype superpeer network were sent an application-level ping every
30 minutes for about 25 days beginning September 12, 2005. Asin
the web sites trace, there are a number of short periods when many
nodes appear to fail, due to network problems near the measure-
ment site.

Gnutella peers [31]:Each of a set of 17,125 IP addresses par-
ticipating in the Gnutella peer-to-peer file sharing network was sent
a TCP connection request every 7 minutes for about 60 hours in
May, 2001. A host was marked as up when it responded with a
SYN/ACK within 20 seconds, indicating that the Gnutella applica-
tion was running. The majority of those hosts were usually down
(see Table 1).

2.4 Simulation setup
We tabulate churn in an event-based simulator which processes

transitions in state (down, available, and in use) for each node.
We allow the selection algorithm to react immediately aftereach
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Figure 1: Churn (left) and fraction of requests failed in Chord (center) for varying α, with fixed k = 50 nodes in use and the synthetic
Pareto lifetimes. Right: Chord in the PlanetLab trace (one trial per data point).
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Figure 2: Churn with varying average number of nodes in use traces. The key at lower right applies to all six plots.
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Figure 3: Churn of Random Replacement relative to other strategies. The key at right applies to all three plots.

change in node state. This is a reasonable simplification forappli-
cations which react within about 7 minutes, since the time between
pings used to produce the traces is at least this much.

We also feed the sequence of events (transitions to or from the
in usestate) into a simple simulator of the Chord protocol included
with the i3 [33] codebase. Events are node joins and failures and
datagrams being sent and received. Datagram delivery is expo-
nentially distributed with mean50 ms between all node pairs with
no loss (unless the recipient fails while the datagram is in flight).
Once per simulated second we request that two random DHT nodes
v1, v2 each route a message to the owner of a single random keyk.
The trial hasfailedunless both messages arrive at the same destina-
tion. Failure due to message loss was about an order of magnitude
more common than failure due to inconsistency (the messagesbe-
ing delivered to two different nodes).

In all cases, we split each trace in half, train the fixed strategies
on the first half, simulate the strategies on the whole trace,and
report statistics on the second half only. All plots use at least10
trials and show95% confidence intervals unless otherwise stated.
For the traces with more than1000 nodes, we sample1000 random
nodes in each trial.

In the real-world traces, the parameterk does not directly control
system size for the fixed strategies, since some nodes have extended
downtimes. To provide a fairer comparison, we plot performance
as a function of theaverage number of nodes in use over time, con-
trolled behind the scenes by varyingk. Replacement strategies have
an advantage that this metric doesn’t capture: the number ofnodes
in use is exactlyk as long as≥ k nodes are up.

2.5 Results
The results of this section are shown in Figures 1-4. Note that

for clarity in the plots, we have shown the Preference List strategies
separately (Figure 4).

Some basic properties
Figure 1 shows churn in the synthetic Pareto session times asa
function ofα with fixed k, so thatn = k/α varies. Here all fixed
strategies are equivalent: since all nodes have the same mean ses-
sion time, it is not possible to pick out a set of nodes that is consis-
tently good. We can also see that Random Replacement is closeto
Max Expectation whenα is not small. As one would expect, per-
formance is best whenα ≪ 1. In this case,Max Expectation does
much better than RR intuitively because it finds the few nodeswith
very long time to failure.

Figure 1 also demonstrates that churn is roughly proportional to

fraction of requests failed in Chord, in the synthetic and PlanetLab
traces. In the latter case, we vary the number of nodes in usek
rather thann, which results in more failures ask grows since route
lengths increase asO(log k). Not shown is that RR results in3.3%
lower mean message latency in Chord in the PlanetLab trace. We
will see how churn affects other systems in Section 4.

Benefit of Replacement over Fixed strategies
In the two peer-to-peer traces, the best fixed strategies match the
performance of the best replacement strategies, perhaps since these
traces are shorter than the others (Table 1). In any case, fixed strate-
gies are less applicable in a peer-to-peer setting due to thedynamic
population.

In the other three traces, the best replacement strategies offer a
1.3-5× improvement over the best fixed strategy, depending onk
and the trace. This suggests that dynamically selecting nodes for
a long-running distributed application would be worthwhile when
churn has a sufficient impact on cost or service quality.

In the PlanetLab trace, the fixed strategies are particularly poor.
This is primarily due to a period of uncharacteristically high churn
from late October until early December, 2004, coinciding with the
PlanetLab V3 rollout. During this period, fixed strategies had an
order of magnitude higher churn than at other periods, whilethe
replacement strategies increased by only about 50%. While this is
impressive on the part of the replacement strategies, the rollout pe-
riod may not be representative of PlanetLab as a whole. Restricting
the simulation to the6-month period after the rollout (Figure 2(b)),
the smart fixed strategies offer some benefit, and there is less sep-
aration between strategies in general. However, all of the replace-
ment strategies are still more effective than the best fixed strategy.

Agnostic strategies
Figure 3(a) shows the churn of Random Replacement divided by
the churn of Max Expectation, the overall best strategy (other than
Optimal, which requires future knowledge). As in the synthetic
distributions, RR’s relative performance is worse for small k, but is
usually within a factor of2 of Max Expectation.

Figure 4 illustrates the general behavior of the PreferenceList
strategies via the PlanetLab trace. Active PL is similar to,and
worse than, Fixed Random. Intuitively, this is because bothstrate-
gies pay for every failure that occurs on a fixed set ofk nodes.
Additionally, according to our definition of churn, Active PL pays
to add preferred nodes as soon as they recover. Passive PL becomes
more similar to Fixed Random ask increases. While it doesn’t pay
for every failure on the topk nodes, it is usually using those nodes
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and pays for most of the failures.
Figures 3(b) and (c) show churn under the Passive and Active PL

strategies, respectively, divided by the churn of RR. RR is generally
1.2-3× better than Passive and2.5-10× better than Active PL.

In the next section, we give more precise intuition for — and
analysis of — the differing performance of RR and PreferenceList
strategies. In Section 4 we will show how that difference affects
system design.

3. ANALYSIS
Why does picking a random replacement for each failed node

produce much lower churn than using a fixed random set of nodes,
or the topk nodes on a preference list? We answer that question
within a stochastic model defined in Section 3.1. We give intuition
for why Preference List strategies are as bad as Fixed Randomin
Section 3.2, and why RR does better in Section 3.3.

Our main analytical results are in Section 3.4. We derive RR’s
expected churn rate, show that its churn decreases as the session
time distributions become more skewed, and show that if all nodes
have equal mean session time, RR has no worse than twice the
churn of any fixed or Preference List strategy. However, if there
are very few nodes with high mean session time, RR can be much
worse.

3.1 Stochastic model
We use the following renewal process. For each nodevi, there is

a distribution of session times with given PDFfi and meanµi. At
time 0 all nodes are up. Each node draws a session timeℓ1 from
its distribution independently of all other nodes, fails attimeℓ1, re-
covers instantaneously, draws another session timeℓ2, fails at time
ℓ1+ℓ2 , and so on until the end of the run at some given timeT . We
will be interested in the expected churn asT → ∞. (If instanta-
neous recovery seems unrealistic, we note that the analysisof RR is
identical in the model that each node has only a single session, and
the total number of nodes is held constant by introducing a fresh
node after each failure.)

To simplify the exposition, we will assume all nodes have equal
meanµ unless otherwise specified.

3.2 Fixed and Preference List strategies
Fixed strategies are very easy to analyze in this model. Since

nodes recover instantaneously, our definition of churn reduces to
2

kT
times the number of failures (1

k
for each failure and1

k
for each

recovery, normalized by timeT ). As T → ∞, the number of

failures on any node approaches its expected valueT/µ, so the
total number of failures on thek selected nodes approachesTk

µ
.

Thus all fixed strategies result in expected churn2

kT
· Tk

µ
= 2/µ.

Now consider Passive PL and supposeS is the set ofk most
preferred nodes. Like fixed strategies, each failure of some node
v ∈ S causes us to pay2

kT
for the failure and replacement. Since

recovery is instantaneous, the next timesome othernode fails,v
must be its replacement (at any time there will be at most one node
in S not in use). Ask grows, the rate of failures of in-use nodes
grows, so we switch back tov more and more quickly. In particu-
lar, the probability that we switch back tov before its next failure
approaches1. Thus, for largek, Passive PL pays for nearly every
failure on{v1, . . . , vk} and its churn approaches2/µ also.

Active Preference is similar, but it pays1
kT

to switch back tov
after its recovery, yielding churn3/µ.

3.3 Intuition for Random Replacement
RR’s good performance is an example of the classic “waiting

time paradox”. When RR picks a nodevi after a failure, the re-
placement’s time to failure (TTF) isnot simply drawn from the
session time distributionfi. Rather, RR is (roughly) selecting the
current session of a random node. This is biased towards longer
sessions since a node spends longer in a long session than in ashort
one.

Alternately, consider some node in the system. As it proceeds
through a session, the probability that it has been picked byRR
increases, simply because there have been more times that itwas
considered as a potential replacement. Thus, nodes with longer
uptimes are more likely to have been picked. And for realistic dis-
tributions, nodes with longer uptimes are less likely to fail soon.

But RR does very badly when stable nodes are rare. Suppose
k = 1 and all nodes have exponential session times, one with mean
r ≫ 1 andn−1 with mean1. When RR selects a node, its expected
time to failure is1

n
(r) + n−1

n
(1) ≈ 1 whenn ≫ r, so its churn is

2. But the best fixed strategy has mean TTFr and churn2/r.
A rigorous and general analysis of RR takes some more work

and is the subject of the next section.

3.4 Analysis of Random Replacement
We now derive RR’s churn rate in terms of the session time dis-

tributions andα, assuming largen andT but not assuming equal
means (Theorem 1), and show that the analysis matches simulations
even forn = 20 (Figure 5). From this we show that the churn of
RR decreases as the distributions become more “skewed” (Corol-
lary 1). We will define this rigorously, but as an example, thePareto
distribution becomes more skewed as the exponent parametera de-
creases [1]. Finally, we show that for any session distributions that
have equal mean, RR has at most twice the expected churn of any
fixed or Preference List strategy (Corollary 2).

To simplify the analysis, we assume nodes belong to an arbitrar-
ily large constant numberd of groups ofn/d nodes, such that the
nodes within each groupi have the same session time distribution
fi. Additionally, our analysis assumes that the session time dis-
tributions have the property that the system converges to a steady
state, in the following sense.

DEFINITION 1. (Stability) LetC be the churn rate andLi be a
session time of nodei chosen uniformly at random over all sessions
in a run of lengthT . Let random variablesXi andRi be the length
of Li and the number of reselections duringLi. Finally, let c =
αn
2

· E[C] be the expected rate of reselections. Then the session
time distributionsf1, . . . , fd arestableif they have finite mean and
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2
.

variance,E[C] > 0, and∀i,

Pr[(1 − ε)cXi ≤ Ri ≤ (1 + ε)cXi] ≥ 1 − ε

∀ε > 0, α ∈ (0, 1), and sufficiently largen andT .

This property is trivially true in the (uninteresting) casethat all
nodes have exponentially distributed session times with common
mean. We conjecture that in fact it is true quite generally. Our
main analytical result is the following.

THEOREM 1. Let C be the churn in a trial of lengthT using
Random Replacement. If the node session time distributions(fi)
are stable andα ∈ (0, 1), then asn, T → ∞, E[C] is given by the
unique solution to

E[C] =
2

αd

d
X

i=1

1

µi

„

1 − E

»

exp



−
α

2(1 − α)
E[C] · Li

ff–«

,

where random variableLi has PDFfi.

PROOF. See [14].

Figure 5 shows agreement of this analysis with a simulation for
n = 20 and Pareto-distributed session times with PDFf(x) =
aba/(x+b)a+1, as in Figure 1. We varya and pickb so thatµ = 1.
Even though the analysis assumes largen, it differs from the sim-
ulation by≤ 1.5% for a ≥ 1.5. As a approached1, convergence
time in the simulation became impractical. Fora ≤ 1, f(x) has
infinite variance and does not satisfy the conditions of Theorem 1.

We next characterize the churn of RR in terms of how “skewed”
the session time distributions are, in the sense of the Lorenz partial
order:

DEFINITION 2. Given two random variablesX, X ′ ≥ 0 with
CDFs F and F ′, respectively, we sayX ′ � X (“ X ′ is more
skewed thanX”) when E[X ′] = E[X] < ∞, the PDFs ofX and
X ′ exist, and for ally ∈ [0, 1],

E
ˆ

X ′ |X ′ ≥ x′
˜

≥ E [X |X ≥ x] ,

wherex′ = F
′
−1(y) andx = F−1(y).

Note thatx′ andx are theyth percentile values ofX ′ andX, so
intuitively this definition compares the tails of the two distributions.
The Lorenz partial order is consistent with variance, in thesense
thatX ′ � X implies var(X ′) ≥ var(X).

Our first corollary states that RR’s expected churn decreases as
the session time distributions become more skewed.

COROLLARY 1. Let C andC′ be the expected churn of RR as
given by Theorem 1 under session time distributions(fi) and(f ′

i),
respectively, and fixedα. If f ′

i � fi for all i ∈ {1, . . . , d}, then
E[C′] ≤ E[C].

Thus, for fixed mean session times, the least skewed distribution —
essentially the case that session times are deterministically equal to
their mean — is the worst case for RR. In the special case that all
mean session times are equal, we have the following:

COROLLARY 2. If the session time distributions are stable and
have equal mean, RR’s expected churn is at most twice the expected
churn of any fixed or Preference List strategy.

The proofs appear in [14].

4. APPLICATIONS
We have seen that Random Replacement consistently outper-

forms Preference List strategies (Section 2.5) essentially because
it takes advantage of skewed session time distributions (Section 3).
In this section, we study how these two classes of strategiescome
up in real systems.

We begin in Section 4.1 with a simple example, anycast server
selection, in which there are natural analogies for strategies on the
spectrum between RR and PL, and doinglesswork (in terms of
optimizing latency) decreases churn. We also study how quickly
RR converges to its steady-state churn rate.

In Section 4.2 we discuss how two classes of proposed DHT
topologies behave like Active PL and RR, and show that randomiz-
ing the Chord topology decreases the fraction of failed lookups by
29% in the Gnutella trace.

In Section 4.3, we show how strategies similar to RR and PL oc-
cur in overlay multicast tree construction. Our results also provide
further insight into an initially surprising effect observed by [32],
that a random parent selection algorithm was better than a certain
longest-uptime heuristic.

Finally, Section 4.4 explores two strategies for placing replicas
in DHTs. Although a difference in their associated maintenance
bandwidth had been previously observed, we show that part ofthe
performance difference is due to behavior close to RR in one,and
PL in the other.

4.1 Anycast
To give a simple instantiation of preference list and RR strate-

gies, consider an endhost which desires to communicate withany
of a set ofn acceptable servers. The endhost begins by connecting
to a random server. Whenever its current server fails, it obtains a list
of them servers to which it has lowest latency, perhaps by utiliz-
ing an anycast service such as [3,12,38], and connects to a random
one of thesem. Additionally, the endhost periodically probes for a
closer server that may have newly joined, switching to such aserver
after some random delay in[0, t] following the join.

We simulated the resulting number of failures in a simple simu-
lator with events at the level of node joins and failures, as in Sec-
tion 2. We do not count a switch as a failure. Latencies were
obtained from a synthetic edge network delay space generator of
Zhang et al [39], which is modeled on measurements of latency
between DNS servers. The large availability traces were sampled
down to2000 nodes.

Figure 6(a) depicts the tradeoff between server failure rate and
latency that results from various choices of the parametersm and
t in the Skype trace. The upper-left point hast = 1 minute and
m = 1, and corresponds to an Active PL strategy. Ast → ∞, we
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Figure 7: DHT neighbor selection simula-
tion in Gnutella trace.

move to a Passive PL strategy, and failure rate decreases by roughly
56% (46-72% in the other traces). Increasingm results in an RR
strategy and decreases failure rate by a further13% (13-21% in
the other traces). This latter decrease is modest since we are only
selecting one node at a time (compare with Figure 3(b) withk = 1
nodes in use). However, this may be useful if, for example, a mean
latency of40 ms were acceptable to the application in question. We
also simulated a hybrid strategy which usedt = ∞ and selected
the replacement server which minimizedw · latency − (1 − w) ·
uptime. As w decreases from1 to 0, the strategy moves from
Passive PL to Longest Uptime. In the Skype trace, this additional
uptime information reduces failure rate by about24% below the
randomized strategy withm = 32.

Of course, the right point in the tradeoff space depends on the
particular application, but these results show that we should expect
stability to suffer as latency is better optimized, and conversely that
doing a littlelesswork is an easy way to reduce the failure rate.

So far we have assumed an endhost which continually selected
a server over the entire trace. Suppose now that the endhost ar-
rives at a random time, uses RR server selection, and departsafter
a given session lengthℓ. Figure 6(b) shows that whenℓ is small,
the endhost experiences the mean server failure rate, as in Active
PL. Intuitively, the endhost departs before it makes full use of the
session of the server it selected. The failure rate converges asℓ
approaches the mean session length of a RR-selected server,de-
creasing by2.3×-5.1× depending on the trace.

As an example, some Skype peers which are behind NATs se-
lect superpeers through which to relay voice calls. Since90% of
relayed Skype calls last less than36 minutes [15], if the peers se-
lect relays randomly, these calls would see roughly the meansu-
perpeer failure rate (one failure every16 hours). However, one
could imagine designing the superpeer network to maintain aset of
randomly selected “super-superpeers” through which interruption-
sensitive voice calls are routed when possible. Such a design would
result in a failure rate similar to that of a persistent endhost session
(one failure every42 hours).

4.2 DHT neighbor selection
In a DHT, each nodev is assigned an identifierid(v) in the

DHT’s keyspace. Ownership of the keys is partitioned among the
nodes. Each node in a DHT maintains links to certain other nodes
as a function of the IDs of the nodes. Generally these come in two
types: sequentialneighbors, such as the successor list in Chord:
each nodev maintains links to aboutlog n nodes whose IDs are
closest tov’s. These are used to maintain consistency of the par-

titioning of the keyspace among nodes. Second, nodes havelong-
distanceneighbors, such as the finger table in Chord, to provide
short routes between any pair of nodes. We will compare two dif-
ferent ways of selecting long-distance neighbors.

Deterministic and randomized topologies
In the first class of topologies, used in Chord [34], CAN [26],
and others [17, 25], each nodev maintains links to the owners
of certain other IDs which are a deterministic function ofv’s ID.
For example, Chord’s keyspace is{0, . . . , N − 1}, whereN =
2160, and nodev maintains links calledfingers to the owners of
id(v) + 2i(modN) for eachi ∈ {0, . . . , (log2 N) − 1}. This re-
sults in links toΘ(log n) distinct nodes, wheren is the number of
nodes in the system. Each node periodically performs lookupop-
erations to find the current owner of the appropriate key for each
of its fingers, updating its links as ownership changes due tonode
arrivals and departures. In Chord, a keyx is owned by the node
whose ID most closely followsx in the (modular) keyspace. Thus
the choice of each fingeri for a nodev can be described as an Ac-
tive Preference List strategy withk = 1 nodes in use, where the
preference ordering ranks a nodew according to the distance from
id(v) + 2i to id(w).

In the second class of topologies, links are chosen randomly.
Symphony [22] was the first design to explicitly choose random
neighbors, but some other topologies have enough underlying flex-
ibility [16] that trivial modifications of the original design allow
them to choose from many potential long-distance neighbors. For
example, a natural way to randomize Chord1 is to select theith fin-
ger as the owner of a random key in{id(v)+2i, . . . , id(v)+2i+1}.
When that link fails, we can choose a new random neighbor in the
same range. Unsurprisingly, this strategy is essentially RR.

Results and implications
We simulated these two variants of Chord using the simulatorand
methodology described in Section 2.4. In each trial we sampledn
random nodes from the Gnutella trace and simulated a run of Chord
over thosen nodes, with deterministic and random neighbor selec-
tion. Since most of the nodes are usually down, we plot results as
a function ofñ, the average number of nodes up. Figure 7 shows
that with ñ ≈ 850, the randomized topology has29% fewer failed
requests due to the lower finger failure rate. The randomizedtopol-
ogy also had very slightly longer routes (7.6% longer forñ ≈ 27
but decreasing to just0.8% longer forñ ≈ 850).

1This topology was studied in [23] in the context of route length.
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Figure 8: Multicast simulation results.

Leonard et al [19] analyzed the resilience of several P2P sys-
tems including Chord in a stochastic model, deriving the expected
time until a node is disconnected from the network. The analy-
sis assumed that the selection of a neighbor is independent of its
age — essentially an RR strategy. We have now seen that Chord,
as well as the other deterministic DHTs, in fact follow a PL strat-
egy. Since time-until-disconnection depends superlinearly on fin-
ger failure rate, the assumption of [19] would result in a significant
overestimate of the resilience of the standard Chord protocol, as
well as the other deterministic DHTs.

Several advantages of flexible, non-deterministic topologies are
well known, most notably the ability to use proximity neighbor se-
lection to reduce latency [16] – which, depending on the implemen-
tation, may result in a latency-based PL strategy. In the work most
similar to this section, Ledlie et al [18] used Longest Uptime for fin-
ger selection. In the same Gnutella trace, their simulations showed
a 42% reduction in maintenance bandwidth when compared to a
proximity-optimizing neighbor selection strategy, albeit at the cost
of increasing latency by50%. In contrast, what we highlight here is
that randomized topologies are inherently more stable than deter-
ministic ones, even without explicitly picking neighbors based on
their expected stability.

4.3 Multicast
In this section we simulate how preference list strategies can af-

fect the stability of overlay multicast trees.

Simulation setup
We closely follow the simulation scenario of Sripanidkulchai et
al [32]. We deal with a single-source multicast tree, whose root
is always present without failure. When a nodev joins, it contacts

m random suitable nodes. A node issuitablefor v when it is con-
nected to the tree and has available bandwidth for another child.
The node then picks one of thosem nodes as its parent in the tree,
according to one of several strategies we will describe momentarily.
Whenever a node fails, each of its descendants experiences an in-
terruption in the hypothetical multicast stream, and repeats the join
procedure. Thus a failure near the root may disrupt the structure of
a large subtree.

We use three strategies for selecting the parent among them
suitable nodes: (1) the node withLongest Uptime; (2) the node at
Minimum Depthfrom the root; or (3) the node which would result
in theMinimum Latencyalongv’s path through the tree to the root.
The first two strategies withm = 100 were also simulated in [32],
in traces which had peak sizes of1, 000-80, 000 nodes up.

Unfortunately, we could not test under the traces and node band-
width bounds used in [32] since their data is not publicly available.
Instead, we use the traces of Section 2.3, latencies from Zhang et
al [39] as in Section 4.1, and uniform node capacities: each node
accepts at mostd = 4 children unless otherwise stated. In [32],
after a node fails, its descendants which are contributing more re-
sources are allowed to rejoin before freeriders. Since we use homo-
geneous capacities, we have nodes rejoin in random order. Finally,
a minor difference is that we have a node querym suitable parents
and pick the best, rather than queryingm nodes, filtering out the
unsuitable ones, and picking the best.

We report the total number of interruptions. Additionally,we
periodically sample the mean node depth (number of hops from
each node to the root) and mean latency through the tree to the
root. We take the mean of these metrics over all samples within
each trial, and then over all trials.



Results
We begin by discussing the Min Latency strategy. We will then
confirm and offer additional interpretation of two results of [32]
regarding the Min Depth and Longest Uptime strategies.

Figures 8(a) and 8(b) show that optimizing latency both helps
and hurts the number of interruptions. The casem = 1 is random
parent selection. As we begin increasingm, latency to the root
decreases (Figure 8(d)) but there is a side effect of reducing tree
height (Figure 8(c)), which reduces the interruption rate (22% in
Gnutella,19% in Skype) because there are fewer opportunities for
failure along a node’s path to the root. But form ≥ 4 the mean
node depth is essentially constant and the trees become lessstable,
with interruptions increasing22% in Gnutella and86% in Skype.

The interior structure of the trees reveals the proximate cause of
this instability. Figure 8(e) shows that smallerm actually results in
more stable nodes closest to the root, where failures affectthe most
descendants, whilem = n does a poorer job of getting the best
nodes near the root.

We claim that the ultimate cause of this increase in failure rate
for the Min Latency strategy is due to the Preference List effect.
The case is not as clear as in the previous examples: even with
m = n the trees produced are not deterministic since the nodes re-
join in random order after an ancestor fails. However, consider the
≤ d children of some nodev in the tree. After one of the children
fails, eventually a new child will join. Withm = n the new child
is likely to be a nearby node, while withm = 1 the new child is
selected more like RR. Then withm = 1 we should expect the
children ofv to be more stable, and hencev’s grandchildren will
experience fewer interruptions.

To test this hypothesis, if the nodes had session time distribu-
tions in which RR performedworse than PL strategies, perfor-
mance shouldimproveasm → n. By Corollary 1, such an (un-
realistic) bad case is when session times are essentially constant,
e.g. uniform in[9, 11]. Figure 8(f) shows that in this case, interrup-
tion rate is indeed a monotonically decreasing function ofm.

We now discuss two results of Sripanidkulchai et al [32]. First, in
tests using a fixedm, they found that Min Depth best optimized sta-
bility among the strategies they tested, which is true in most cases
we tested (e.g. all of Figure 8(a)). Interestingly, we find that even
Min Depth can benefit from some randomization as well, with less
than half the interruption rate atm = 4 thanm = n in Skype.
This effect also appeared in the Microsoft PCs trace and to a lesser
extent in PlanetLab, but not in Gnutella or Web Sites.

Second, Sripanidkulchai et al [32] found it surprising thatthe
Longest Uptime parent selection performed more poorly thanran-
dom selection (m = 1) in many cases, and they determined the
cause was that it built much taller trees. We obtained similar re-
sults in Figure 8(a,b) for sufficiently largem. However, we also
find that using Longest Uptime, the nodes near the root are less
stable than in them = 1 case (Figure 8(e)).

In fact, neither Min Depth nor LU optimizes exactly the right
metric. Min Depth ignores the stability of nodes on the path from
the parent to the root, and LU ignores the length of that path and the
stability of all ancestors except the parent. Thus, given the results of
this paper, it should not be surprising that random selection (which,
rather than being agnostic, does a decent job optimizing forthe
right metric) can be better than the other heuristics.

4.4 DHT replica placement
In this section we compare two common strategies,Root Setand

Random,for managing file replicas in distributed hash table-based
storage systems. The metric we study is the rate at which new
replicas are created, which directly affects maintenance bandwidth.

Replica management strategies
In DHT-based storage systems, nodes are assigned identifiers (IDs)
in a keyspace. Each stored file or objecto is also assigned a key
key(o). The node whose identifier most closely followskey(o)
serves as the object’s coordinator orroot r(o). For redundancy,
some numberk of replicas ofo are stored on some set of nodes.

TheRoot Setstrategy for placing those replicas is used in slightly
varying forms by DHash [8], PAST [30], Bamboo [29], and Total
Recall [5], among others: put replicas on thek nodes whose IDs
most closely followkey(o), or the “root set”. Specifically, when a
node in the root set fails, we add the next closest to the set, causing
one replication; when a node joins with an ID that places it inthe
root set, a replica ofo is sent to it. In both cases a file transfer is not
necessary if the node in question already has the file. This occurs
when a node returns after atransient failure, such as a network
outage, which does not affect files stored on disk.

TheRandomstrategy is used by Pond [28], Total Recall [5], and
Weatherspoon et al [37]. The rootr(o) stores a directory of all
available replicas ofo, which may be on any node in the system.
(The directory is assumed to be small relative to the size of an ob-
ject replica, so the cost of replicating it — with, for example, the
Root Set strategy — is negligible.) Random has two parameters,
k and f ∈ (0, 1]. Repair is only initiated when the number of
available replicas falls below⌈f · k⌉, at which point new replicas
are created untilk are available. This “lazy replication” provides a
buffer so the system reacts to transient failures less frequently.

Simulation setup
It has been previously observed [5, 37] that Random significantly
outperforms Root Set, and this has been attributed to a number of
disadvantages of Root Set. Root Set might “forget” about replicas
that end up outside the root set; it replicates when nodes arrive,
rather than only in response to failures; and in some implementa-
tions it lacks the lazy replication thresholdf .

Our goal is to quantify the impact of another difference: the
choice of node on which to place a replica once it is created. To
compare the strategies on equal footing, we modify the Root Set
strategy so that it monitors all replicas in the system, doesnot repli-
cate in response to node joins, and uses the lazy replicationthresh-
old f . The remaining difference is that Root Set places each new
replica on the first node available node in the root set (i.e.,Passive
PL) while Random follows RR node selection.

As before we use a simulator with events at the level of node
joins, node failures, and file replications. Since our traces do not
include information about data loss associated with failures, we as-
sume no data loss, which provides a lower bound on the permanent
failure rate. We assume files are written to the system at the be-
ginning of each trial. We measure the mean number of replications
used to maintain each file after the initial write.

Results
Figure 9 compares the two strategies withf ∈ {1, 3

4
, 1

2
} in two

representative traces, PlanetLab and Gnutella, fork ∈ {2, . . . , 20}.
(Note that each “replica” may be an erasure-coded fragment of the
file, sok = 20 is reasonable; in fact, Pond usesk = 32.) At f = 1
andk = 20 in Gnutella, Random requires30% fewer replications
than Root Set, and in fact Random withf = 1 is as good as Root
Set withf = 3

4
. However, this difference diminishes asf is de-

creased, and the strategies differ little in PlanetLab.
Several limitations of the traces likely underestimate thelong-

term benefit of Random over Root Set. Once transient failuresare
largely masked, the strategies compete at the level of permanent
failures. However, none of the traces is long relative to theperma-
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Figure 9: Replica placement simulation results.

nent failure rate. For example, among Gnutella nodes that were up
at some point in the first half of the trace, only 33% were absent
in the second half, and that fraction was smaller in the othertraces.
Additionally, we have underestimated the permanent failure rate by
assuming no data loss. As a consequence, it is likely that Random
has not yet converged in these simulations (see Section 4.1).

Recently, Tati and Voelker [36] observed an effect of the Random
strategy: nodes with higher average availability will be selected to
receive objects more frequently, and will also likely have higher
average availability in the future. This effect is closely related to
RR (compare with the intuition in Section 3.3) and undoubtedly
contributes to the difference between strategies that we have ob-
served. Separating these effects, as well as obtaining better data on
permanent failures, remains an interesting area of future research.

5. DISCUSSION

When would one use Random Replacement?
As we have seen in Section 4, RR appears in a variety of real sys-
tems. Our results are thus useful in better describing the perfor-
mance of those systems.

However, if a system designer were intentionally implementing
node selection to minimize churn, the results of Section 2 show that
Longest Uptime offers somewhat better performance. Is there any
case in which one would intentionally pick RR?

There are several cases in which RR would be easier to imple-
ment and may offer a better tradeoff between churn and system
complexity. For example, when failures are due to the network, it
may be hard for a nodev to determine when it has “failed” and thus
report its uptime. Ifv notices a dropped connection to some other
nodew, this may be due to the departure ofw or a problem on the
network path betweenv andw.

Even when it is easy to determine the uptime of a node, there
may be incentive for nodes to lie about their uptime to obtainbetter
service, such as faster file transfer in a P2P file distribution system.
In this case, RR would be more robust to misbehavior than LU.

Finally, if we are dealing with a protocol that has already been
standardized, there may be no support for querying a node’s up-
time. A client could potentially implement RR node selection — to
pick DNS servers, for example — without support from the proto-
col and still obtain reasonable stability.

What about load balance?
In all effective node selection strategies, including RR, stable nodes
are used more on average. What performance can we expect when

the most stable nodes are sought after simultaneously by multiple
agents, such as peers in a P2P system or users in a shared infras-
tructure like PlanetLab?

The parameterα, the fraction of nodes needed, gives a way to
analyze the total churn experienced by all users: we can takeα to
be the utilization of the distributed system as a whole. However,
our results do not address fairness between users, which we leave
to future work.

6. RELATED WORK
In the special case of instantaneous recovery times, there is a

precise correspondence between our model of churn (Section2.1)
and page replacement in a two-level memory system: each pageis
a machine; the pages that arenot in cache are the set of in-use ma-
chines; and a page access corresponds to a node failure and instan-
taneous recovery. Churn is thus twice the number of page faults.
What we call Longest Uptime is then exactly the pervasive Least
Recently Used (LRU) policy, and Random Replacement is known
by the same name.

There has been a substantial amount of work on analysis of page
replacement algorithms including LRU and RR; see e.g. [9–11] and
the discussion in [10]. Stochastic analysis of page replacement al-
gorithms has generally been limited to the “independent reference
model” in which one pagePt is accessed in each timestept, where
the(Pt) are i.i.d. This corresponds to the special case of our model
in which node session times are exponentially distributed (with pos-
sibly unequal means). Thus a major difference is that our model
analyzed in Section 3 is not limited to memoryless session times.

Longest Uptime is a common heuristic which has been studied
in contexts including DHT neighbor selection [18], selecting super-
peers [13], and selecting parents in an overlay multicast tree [32].
The Accordion DHT [20] selects neighbors by computing the con-
ditional probability that a node is currently up given when it was
last contacted and how long it was up before that, assuming ses-
sion times fit a Pareto distribution with learned parameters. Mick-
ens [24] used sophisticated statistical techniques to predict future
node uptime, and experimented with placing file replicas in Chord
on successors with greatest predicted time to live.

7. CONCLUSION
This paper has provided a guide to performance of a range of

node selection strategies in real-world traces. We have highlighted
and explained analytically the good performance of Random Re-
placement relative to smart predictive strategies, and relative to
Preference List strategies. Through the difference in churn between



RR and PL strategies, we have explained the performance implica-
tions of a variety of existing distributed systems designs.These
results also show that some dynamic randomization is an easyway
to reduce churn in many protocols. An area of future work is to
demonstrate these differences in a deployment of a large distributed
system.
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