
The Benefits of Network Coding for
Peer-to-Peer Storage Systems

Alexandros G. Dimakis, P. Brighten Godfrey, Martin J. Wainwright and Kannan Ramchandran
Department of Electrical Engineering and Computer Science,

University of California, Berkeley, CA 94704.
Email: {adim, pbg, wainwrig, kannanr}@eecs.berkeley.edu

Abstract— Peer-to-peer distributed storage systems provide reli-
able access to data through redundancy spread over nodes across
the Internet. A key goal is to minimize the amount of bandwidth
used to maintain that redundancy. Storing a file using an erasure
code, in fragments spread across nodes, promises to requireless
redundancy and hence less maintenance bandwidth than simple
replication to provide the same level of reliability. However, since
fragments must be periodically replaced as nodes fail, a key
question is how to generate a new fragment in a distributed way
while transferring as little data as possible across the network.

In this paper, we introduce a general technique to analyze
storage architectures that combine any form of coding and
replication, as well as presenting two new schemes for maintaining
redundancy using network coding. First, we show how to optimally
generate MDS fragments directly from existing fragments inthe
system. Second, we introduce a new scheme called Regenerating
Codes which use slightly larger fragments than MDS but have
lower overall bandwidth use. We also show through simulation
that in realistic environments, Regenerating Codes can reduce
maintenance bandwidth use by25% or more compared with the
best previous design—a hybrid of replication and erasure codes—
while simplifying system architecture.

I. I NTRODUCTION

The purpose of distributed file storage systems such as
OceanStore [17], Total Recall [3], and DHash++ [6] is to
store data reliably over long periods of time using a distributed
collection of disks (say, at various nodes across the Internet).
Ensuring reliability requires the introduction of redundancy, the
simplest form of which is straightforward replication.

Several designs [16], [3], [6] use erasure codes instead of
replication. A Maximum-Distance Separable(MDS) erasure
code stores a file of sizeM bytes in the form ofn fragments
each of sizeM/k bytes, anyk of which can be used to
reconstruct the original file.

However, a complication arises: in distributed storage sys-
tems, redundancy must be continually refreshed as nodes
choose to leave the system and disks fail, which involves large
data transfers across the network. How do we efficiently create
new encoded fragments in response to failures? A new replica
may simply be copied from any other node storing one, but
traditional erasure codes require access to the original data
to produce a new encoded fragment. How do we generate an
erasure encoded fragment when we only have access to erasure
encoded fragments?

In the naive strategy, the node which will store the new
fragment—which we will call thenewcomer—downloadsk
fragments and reconstructs the file, from which a new fragment
is produced. Thus,M bytes are transferred to generate a
fragment of size onlyM/k.

An extended version of this paper will appear in [9].

To reduce bandwidth use, one can adopt what we call theHy-
brid strategy[18]: one full replica is maintained in addition to
multiple erasure-coded fragments. The node storing the replica
can produce new fragments and send them to newcomers, thus
transferring justM/k bytes for a new fragment. However,
maintaining an extra replica on one node dilutes the bandwidth-
efficiency of erasure codes and complicates system design. For
example, if the replica is lost, new fragments cannot be created
until it is restored. In fact, one study comparing the Hybrid
strategy with replication in distributed storage systems [18]
argued that in practical environments, Hybrid’s reduced band-
width is limited, and may be outweighed by its drawbacks, in
part due to the added complication of maintaining two types
of redundancy.

It is thus natural to pose the following question: is it possible
to maintain an erasure code using less bandwidth than the
naive strategy, without resorting to an asymmetric strategy like
Hybrid? More deeply, what is the minimal amount of data that
must be downloaded in order to maintain an erasure code?

In this paper we show how network coding can help for such
distributed storage scenarios. We introduce a general graph-
theoretic framework through which we obtain lower bounds
on the bandwidth required to maintain any distributed storage
architecture and show how random linear network coding can
achieve these lower bounds.

More specifically, we determine the minimum amount of
data that a newcomer has to download to generate an MDS
or nearly-MDS fragment, a scheme which we callOptimally
Maintained MDS(OMMDS). In particular, we prove that if
the newcomer can only connect tok nodes to download data
for its new fragment, then theM-byte download of the naive
strategy is the information-theoretic minimum. Surprisingly, if
the newcomer is allowed to connect to more thank nodes, then
the total download requirement can be reduced significantly.
For example, ifk = 7 (the value used in DHash++ [6]),n =
14, and a newcomer connects ton− 1 nodes, a new fragment
can be generated by transferring0.27M bytes, or73% less
than the naive strategy. However, the associated overhead is
still substantial, and it turns out that Hybrid offers a better
reliability-bandwidth tradeoff than OMMDS. To improve on
Hybrid, we must therefore look beyond MDS codes.

With this perspective in mind, we introduce our second
scheme,Regenerating Codes(RC), which minimize amount of
data that a newcomer must download subject to the restriction
that we preserve the “symmetry” of MDS codes. At a high
level, the RC scheme improves on OMMDS by having a
newcomer store all the data that it downloads, rather than
throwing some away. As a consequence, RC has slightlylarger
fragments than MDS, but very low maintenance bandwidth

overhead, even when newcomers connect to justk nodes. For
example, if k = 7, a newcomer needs to download only
0.16M bytes—39% less than OMMDS and84% less than
the naive strategy. Moreover, our simulation results basedon
measurements of node availability in real distributed systems
show that RC can reduce bandwidth use by up to25%
compared with Hybrid whenk = 7. RC improves even further
ask grows.

We emphasize that there are still tradeoffs between RC and
other strategies. For example, users wishing to reconstruct
the file pay a small overhead due to RC’s larger fragments.
Nevertheless, RC offers a promising alternative due to its
simplicity and low maintenance bandwidth.

II. RELATED WORK

Network coding for distributed storage was introduced in [7],
[8] in a sensor network scenario where a bandwidth was
minimized for a static setup. Related work for storage in
wireless networks includes [10], [14], [24], [21], [1].

Network coding was proposed for peer-to-peer content dis-
tribution systems [11] where random linear operations over
packets are performed to improve downloading. Random net-
work coding was also recently proposed for P2P network
diagnosis [23]. Our paper is based on similar ideas but the
storage systems have different performance metrics that need
to be analyzed.

A number of recent studies [22], [3], [18] compared
replication with erasure coding for large-scale, peer-to-peer
distributed storage systems. The analysis of Weatherspoonand
Kubiatowicz [22] showed that erasure codes reduced storage
and bandwidth use by an order of magnitude compared with
replication. Bhagwan et al [3] came to a similar conclusion
in a simulation of the Total Recall storage system. However,
Rodrigues and Liskov [18] show that in high-churn (i.e., high
rate of node turnover) environments, erasure coding provides
a large benefit but the maintenance bandwidth cost is too high
to be practical for a P2P distributed storage system. In low-
churn environments, the reduction in bandwidth is negligible.
In moderate-churn environments, there is some benefit, but this
may be outweighted by the added architectural complexity that
erasure codes introduce. These results [18] apply to the Hybrid
strategy. In Section V, we repeat the evaluation of [18] to
measure the performance of the two redundancy maintenance
schemes that we introduce.

III. F UNDAMENTAL LIMITS ON BANDWIDTH

A. Information flow graph

Our analysis is based on a particular graphical represen-
tation of a distributed storage system, which we refer to as
an information flow graphG. This graph describes how the
information of the data object travels through time and storage
nodes and reaches reconstruction points at the data collectors.
More precisely, it is a directed acyclic graph consisting ofthree
kinds of nodes: a single data sourceS, storage nodesxin

i, xout
i

and data collectorsDCi. The single nodeS corresponds to the
source of the original data. Storage nodei in the system is
represented by a storage input nodexin

i, and a storage output
nodexout; these two nodes are connected by a directed edge
xin

i → xout
i with capacity equal to the amount of data stored

at nodei. See Figure III-A for an illustration.

Given the dynamic nature of the storage systems that we
consider, the information flow graph also evolves in time. At
any given time, each vertex in the graph is eitheractive or
inactive, depending on whether it is available in the network.
At the initial time, only the source nodeS is active; it then
contacts an initial set of storage nodes, and connects to their
inputs (xin) with directed edges of infinite capacity. From this
point onwards, the original source nodeS becomes and remains
inactive. At the next time step, the initially chosen storage
nodes become now active; they represent a distributed erasure
code, corresponding to the desired steady state of the system.
If a new nodej joins the system, it can only be connected with
active nodes. If the newcomerj chooses to connect with active
storage nodei, then we add a directed edge fromxout

i to xin
j ,

with capacity equal to the amount of data that the newcomer
downloads nodei. Note that in general it is possible for nodes
to download more data than they store, as in the example of the
(14, 7)-erasure code. If a node leaves the system, it becomes
inactive. Finally, a data collectorDC is a node that corresponds
to a request to reconstruct the data. Data collectors connect to
subsets of active nodes through edges with infinite capacity.

Fig. 1. Illustration of an information flow graphG. Suppose
that a particular distributed storage scheme uses an(4, 3)
erasure code in which any3 fragments suffice to recover
the original data. If nodex 4 becomes unavailable and a
new node joins the system, then we need to construct new
encoded fragment inx5. To do so, nodex5

in is connected
to the k = 3 active storage nodes. Assuming that it
downloadsα bits from each active storage node, of interest
is the minimumα required. The min-cut separating the
source and the data collector must be larger than3 for
reconstruction to be possible. For this graph, the min-cut
value is given by2 + α, implying thatα ≥ 1, so that the
newcomer has to download the complete data object if he
connects to onlyk = 3 storage nodes.

B. Bounds

To obtain bounds on the how much each storage node
has to download, we use the following lemma. Due to space
constraints we will only present sketches or fully omit some
proofs.

Lemma 1:A data collectorDC can never reconstruct the
initial data object if the minimum cut inG betweenS andDC

is smaller than the initial object size.
The next claim, which builds on known results from network
coding, shows that there exist linear network codes which can
match this lower bound for all data collectors, and also that
simple linear mixing of packets using random independent co-

2

efficients over a finite field (randomized network coding [13])
will be sufficient with high probability.

Proposition 1: Assume that for some distributed storage
scheme, we construct theG graph and place all the possible
`

n

k

´

data collectors wheren is the number of active nodes. If
the minimum of the min-cuts separating the source with each
data collector is at least the data object sizeM, then there
exists a linear network code such that all data collectors can
recover the data object. Further, randomized network coding
guarantees that all collectors can recover the data object with
probability that can be driven arbitrarily high by increasing the
field size.

Proof: (sketch) This proof is based on a reduction of the
distributed storage problem into a multicasting problem with a
single source sending its data to all

`

n

k

´

possible data collectors.
We can then apply known results for single-source multicast;
network coding can achieve the associated min-cut/max-flow
bound [2] and from [15] we know that a linear network code
will suffice.

Ho et al. [13] show that the use of random linear network
codes at all storage nodes suffices to ensure that each data
collector can reconstruct with probability that can be pushed
arbitrarily high by increasing the field size. (See in particular
Theorem 3 in the paper [13], which ensures that the probability
is at least(1− d

q
)N , whered is the number of data collectors

andN is total number of storage nodes inG andq is the field
size.)

The above results allow us to provide a complete character-
ization of the bandwidth cost associated with maintaining an
MDS erasure code:

Proposition 2: Assume the data object is divided ink frag-
ments, an(n, k)-MDS code is generated and one encoded
fragment is stored at each node. Suppose that one node leaves
the system and that a new joining node wishes to create a new
encoded fragment by downloading anα fraction of a fragment
from each ofn − 1 active storage nodes. Then we must have
α ≥ 1

n−k
for successful reconstruction.

Proof: Consider the information flow graphG for this
storage system. Suppose that any newcomer connects ton −
1 storage nodes and downloads a portionα of the fragment
from each storage node, whereα is to be determined. A data
collector is connected to the newcomer andk−1 other storage
nodes. The minimum cut in this newly formedG is given by
k − 1 + (n − 1 − (k − 1))α; for successful reconstruction, it
has to be at leastk, so α ≥ 1

n−k
is the minimum possible

bandwidth to maintain an MDS code.
In the special case of the(n, k) = (14, 7) erasure code
considered in the introduction, Proposition 2 verifies the earlier
claim that the newcomer needs to download only1

7
of a

fragment from each of then − 1 = 13 active storage nodes,
for a total of 1

7
· 1

k
M(n − 1) ≈ 0.27M bytes.

We refer to MDS codes maintained in the procedure spec-
ified by Proposition 2 asOptimally Maintained MDS, or
OMMDS for short.

IV. REGENERATING CODES

The OMMDS scheme of the previous section is a significant
improvement over the naive scheme of downloading the entire
file to generate a new fragment. However, the associated
overhead is still substantial, and our experimental evaluation in
Section V reveals that the Hybrid scheme still offers a better

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1 2 4 8 16 32

O
ve

rh
ea

d

k

Naive
OMMDS, n=2k
OMMDS, n=4k

RC

Fig. 2. Theoverheadβ is the number of bytes downloaded
to produce a fragment, divided by the size of an MDS
fragment. For the naive strategy,βnaive = k; for OMMDS in
which newcomers connect ton−1 nodes,βOMMDS = n−1

n−k
;

for RC in which newcomers connect to justk nodes,βRC =
k2/(k2 − k + 1). Moreover, RC fragments areβRC times
larger than MDS fragments, so that the data collector must
downloadβRC times the size of the original file.

reliability-bandwidth tradeoff than the OMMDS. Moreover,
as established in Proposition 2, an MDS code cannot be
maintained with less bandwidth than OMMDS. Therefore, we
can only hope to use less bandwidth with a coding scheme
other than an MDS code.

With this perspective in mind, this section introduces the
notion of aRegenerating Code(RC). Subject to the restrictions
that we preserve the “symmetry” of MDS codes (to be detailed
later), we derive matching lower and upper bounds on the
minimal amount of data that a newcomer must download. In
contrast with OMMDS, the RC approach has very low band-
width overhead, even when newcomers connect to justk nodes.
At a high level, the RC scheme improves on OMMDS by
having a newcomer storeall the data that it downloads, rather
than throwing some away. As a consequence, RC fragments
are slightly larger than MDS fragments, by a factorβRC =
k2/(k2 − k + 1) (see Figure 2 for an illustration), and any
data collector that reconstructs the file downloadsβRC times
the size of the file. However, note thatβRC → 1 ask → ∞.

Regenerating codes minimize the required bandwidth under
a “symmetry” requirement over storage nodes. Specifically,we
require that anyk fragments can reconstruct the original file;
all fragments have equal sizeαM; and a newcomer produces a
new fragment by connecting to anyk nodes and downloading
αM/k bits from each. In this paper, to simplify the scheme,
we fix the number of nodes to which the newcomer connects
to k (the minimum possible). The free parameterα will be
chosen to minimize bandwidth.

Assume that newcomers arrive sequentially, and that each
one connects to an arbitraryk-subset of previous nodes (includ-
ing previous newcomers). The following result characterizes
the bandwidth requirements of the RC scheme:

Theorem 1:Assume all storage nodes storeαM bits and
newcomers connect tok existing nodes and download1

k
αM

bits from each. Then, define

αc =
1

k
×

1

1 − 1

k
+ 1

k2

. (1)

If α < αc then reconstruction at some data collector who

3

connects tok storage nodes is information theoretically im-
possible.

If α ≥ αc there exists a linear network code such that any
data collector can reconstruct. Moreover, randomized network
coding at the storage nodes will suffice with high probability.

Proof: (sketch) We will show that ifα < αc the minimum
cut from somek subset of storage nodes to the sourceS will be
less thanM and therefore reconstruction will be impossible.
In addition whenα ≥ αc the minimum cut will be greater or
equal toM. Then by Proposition 1 a linear network code exists
so that all data collectors can recover. Further randomized
network coding will work with probability that can be driven
arbitrarily high by increasing the field size.

Therefore it suffices to find the minimumαc such that any
k subset of storage nodes has a minimum cut from the source
equal toM. We proceed via induction onn, the number of
storage nodes. We refer to any subgraph ofG with k inputs
and j ≥ k outputs as abox; a box is calledgood if every k
out of thej outputs can support an end-to-end flow ofM. The
base case of the induction is trivial if we assume that there are
k storage nodes initially.

For the inductive step, assume we have a good box denoted
Bj−1 and a newcomerXi connects to anyk outputs ofBj−1

with edges that have capacityαM

k
. One needs to show that

the new graph with the outputs ofBj−1 plus the output of the
storage nodeXi will be a good boxBj . Let N(Xi) denote
the storage nodes whereXi connected to. Consider a data
collector that connects toy1 nodes inN(Xi)

c and y2 nodes
in N(Xi), and also to the newcomer (all data collectors that
do not connect to the newcomer receive enough flow by the
induction hypothesis). We therefore havey1 + y2 = k− 1 and
also the minimum cut for this data collector is

y1αM + y2αM + (k − y2)
αM

k
. (2)

To ensure recovery this has to work for every data collector,
i.e.

y1αM + y2αM + (k − y2)
αM

k
≥ M, (3)

∀y1, y2, y1 + y2 = k − 1. (4)

It is easy to see thaty1 = 0 is the worst case, and from there
one obtains that

α ≥
1

k(1 − 1

k
+ 1

k2)
=: αc (5)

is necessary and sufficient for reconstruction.

V. EVALUATION

In this section, we compare Regenerating Codes with other
redundancy management schemes in the context of distributed
storage systems. We follow the evaluation methodology of [18],
which consists of a simple analytical model whose parameters
are obtained from traces of node availability measured in
several real distributed systems.

A. Metrics

Three metrics of importance arereliability, bandwidth,
and disk usage. Since bandwidth is generally considered a
much more constrained resource than disk space in wide-
area environments, we omit an explicit comparison of disk
space used by the redundancy management schemes. However,

Fig. 3. Illustration of the inductive step. The internal box
is good and we want to show that the external box is
also good if the newcomer downloads1/kαM from the
existing nodes the big box is also good.

disk usage would be proportional to bandwidth for all the
schemes we evaluate, with the exception of OMMDS, which
is the only scheme in which a newcomer stores less on disk
than it downloads. We measure reliability in terms of(file)
availability, that is, the fraction of time that a file can be
reconstructed from the data stored on nodes that are currently
available. Another important notion of reliability that wedo not
evaluate here isdurability, which measures permanent data loss
rate.

B. Model

We use a model which is intended to capture the average-
case bandwidth used to maintain a file in the system, and the
resulting average availability of the file. With minor exceptions,
this model and the subsequent estimation of its parameters are
equivalent to that of [18]. Although this evaluation methodol-
ogy is a significant simplification of real storage systems, it
allows us to compare directly with the conclusions of [18] as
well as to calculate precise values for rare events.

The model has two key parameters,f and a. First, we
assume that in expectation a fractionf of the nodes storing
file data fail per unit time, causing data transfers to repairthe
lost redundancy. Second, we assume that at any given time
while a node is storing data, the node is available with some
probabilitya. Moreover, the model assumes that the event that
a node is available is independent of the availability of allother
nodes.

Under these assumptions, we can compute the expected
availability and maintenance bandwidth of various redundancy
schemes to maintain a file ofM bytes. We make use of the
fact that for all schemes except OMMDS (even Hybrid [18]),
the amount of bandwidth used is equal to the amount of
redundancy that had to be replaced, which is in expectation
f times the amount of storage used.

Replication: If we storeR replicas of the file, then we store
a total of R · M bytes, and in expectation we must replace
f · R · M bytes per unit time. The file is unavailable if no
replica is available, which happens with probability(1− a)R.

Ideal Erasure Codes:For comparison, we show the band-
width and availability of a hypothetical(n, k) erasure code
strategy which can “magically” create a new packet while
transferring justM/k bytes (i.e., the size of the packet).
Settingn = k · R, this strategy sendsf · R · M bytes per

4

Trace Length Start Mean # f a
(days) date nodes up

PlanetLab 527 Jan. 2004 303 0.017 0.97
Microsoft 35 Jul. 1999 41970 0.038 0.91

Skype 25 Sep. 2005 710 0.12 0.65
Gnutella 2.5 May 2001 1846 0.30 0.38

TABLE I: The availability traces used in this paper.

unit time and has unavailability probabilityUideal(n, k) :=
Pk−1

i=0

„

n
i

«

ai(1 − a)n−i.

Hybrid: If we store one full replica plus an(n, k) erasure
code wheren = k · (R − 1), then we again storeR · M
bytes in total, so we transferf · R ·M bytes per unit time in
expectation. The file is unavailable if the replica is unavailable
and fewer thank erasure-coded packets are available, which
happens with probability(1 − a) · Uideal(n, k).

OMMDS Codes: A (k, n) OMMDS Code with redundancy
R = n/k storesRM bytes in total, sof · R ·M bytes must
be replaced per unit time. But replacing a fragment requires
transferring over the networkβOMMDS = (n−1)/(n−k) times
the size of the fragment (see Section III-B), even in the most
favorable case when newcomers connect ton − 1 nodes to
construct a new fragment. This results inf · R ·M · βOMMDS

bytes sent per unit time, and unavailabilityUideal(n, k).
Regenerating Codes:A (k, n) Regenerating Code stores

M · n · βRC bytes in total (see Section IV). So in expectation
f · M · n · βRC bytes are transfered per unit time, and the
unavailability is againUideal(n, k).

C. Estimatingf and a

In this section we describe how we estimatef , the fraction
of nodes that permanently fail per unit time, anda, the mean
node availability, based on traces of node availability in several
distributed systems.

We use four traces of node availability with widely varying
characteristics, summarized in Table I, which used periodic
network-level probes to determine host availability. The mea-
surements were in four systems representing distinct environ-
ments: PlanetLab [20]; a stable, managed network research
testbed; desktop PCs at Microsoft Corporation [4]; superpeers
in the Skype P2P VoIP network [12], which may approx-
imate the behavior of a set of well-provisioned endhosts,
since superpeers are likely selected in part based on available
bandwidth [12]; and ordinary peers in the Gnutella filesharing
network [19].

It is of key importance for the storage system to distinguish
betweentransientfailures, in which a node temporarily departs
but returns later with its data intact; andpermanentfailures, in
which data is lost. Only the latter requires bandwidth-intensive
replacement of lost redundancy. Most systems use atimeout
heuristic: when a node has not responded to network-level
probes after some period of timet, it is considered to have
failed permanently. To approximate storage systems’ behavior,
we use the same heuristic. Node availabilitya is then calculated
as the mean (over time) fraction of nodes which were available
among those which were not considered permanently failed at
that time.

The resulting values off and a appear in Table I, where
we have fixed the timeoutt at 1 day. Longer timeouts reduce

overall bandwidth costs [18], [5], but begin to impact durabil-
ity [5] and are more likely to produce artificial effects in the
short (2.5-day) Gnutella trace.

VI. QUANTITATIVE RESULTS AND CONCLUSIONS

Figure 4 shows the tradeoff between mean unavailability
and mean maintenance bandwidth in each of the strategies of
Section V-B using the values off anda from Section V-C, for
k = 7 and k = 14. Due to space limitations, we omit results
for the Microsoft PCs and Skype traces, which lie between
those for PlanetLab and Gnutella. Points in the tradeoff space
are produced by varying the redundancy factorR.

In all cases, OMMDS obtains worse points in the tradeoff
space than Hybrid, though it is not much worse for largeR as
shown in the Gnutella results.

Our main conclusion is that our proposed network coding
scheme obtains substantial benefits over previous techniques,
especially in relatively stable environments. For example, in
the PlanetLab trace withk = 7, RC has about25% lower
bandwidth for the same availability, or more than3 orders of
magnitude lower unavailability with the same bandwidth. The
difference is even greater fork = 14.

RC’s reduction in bandwidth compared with Hybrid dimin-
ishes as the environment becomes less stable; in the most
extreme case of the Gnutella trace, RC can actually be very
slightly worse. The reason can be seen by comparing the two
schemes with Ideal Erasure Codes. For fixedk and n, both
RC and Hybrid have roughly the same availability (Hybrid
is slightly better due to the extra replica). However, in terms
of bandwidth as we scalen, RC has a smallconstant factor
overhead compared with Ideal Erasure codes, while Hybrid has
a rather large but onlyadditiveoverhead due to the single extra
replica. For large enoughn, such as is necessary in Gnutella,
the additive overhead wins out. But such scenarios are unlikely
to be practical in any case due to the high bandwidth required
of all schemes.

However, RC still has some drawbacks. First, constructing
a new packet, or reconstructing the entire file, requires com-
muncation withk nodes rather than one (in Hybrid, the node
holding the single replica). This adds overhead that could be
significant for sufficiently small files or sufficiently largek.
Perhaps more importantly, there is a slight increase in total
data transferred toread the file, roughly14% for k = 7 but
diminishing to7.1% for k = 14 and3.1% for k = 32. Thus,
if the frequency that a file is read is sufficiently high and
k is sufficiently small, this inefficiency could overwhelm the
reduction in maintenance bandwidth.

If the target application is archival storage or backup, files
are likely to be large and infrequently read. We believe this
is one case in which RC is likely to be a significant win over
both Hybrid and replication.

Our results suggest that network coding can provide a sig-
nificant reduction in maintenance bandwidth and also simplify
system architecture since only one type of redundancy needsto
be maintained. This addresses the two principal disadvantages
of using erasure coding discussed in [18], and therefore we
believe that regenerating codes are a promising design choice
for certain peer-to-peer storage systems.

5

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1 1.2

P
r[

da
ta

 is
 n

ot
 a

va
ila

bl
e]

Aggregate bandwidth in KB/s per 1 GB file

OMMDS
Replication

Hybrid
RC

Erasure ideal

(a) PlanetLab trace,k=7

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25 30 35

P
r[

da
ta

 is
 n

ot
 a

va
ila

bl
e]

Aggregate bandwidth in KB/s per 1 GB file

OMMDS
Replication

Hybrid
RC

Erasure ideal

(b) Gnutella trace,k=7

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1 1.2

P
r[

da
ta

 is
 n

ot
 a

va
ila

bl
e]

Aggregate bandwidth in KB/s per 1 GB file

OMMDS
Replication

Hybrid
RC

Erasure ideal

(c) PlanetLab trace,k = 14

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25 30 35

P
r[

da
ta

 is
 n

ot
 a

va
ila

bl
e]

Aggregate bandwidth in KB/s per 1 GB file

OMMDS
Replication

Hybrid
RC

Erasure ideal

(d) Gnutella trace,k = 14

Fig. 4: Availability-bandwidth tradeoff produced by varying redundancyR, with parameters derived from the traces.

REFERENCES

[1] S. Acedanski, S. Deb, M. Médard, and R. Koetter. How good
is random linear coding based distributed networked storage. In
NetCod, 2005.

[2] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network
information flow. IEEE Trans. Info. Theory, 46(4):1204–1216,
July 2000.

[3] Ranjita Bhagwan, Kiran Tati, Yu-Chung Cheng, Stefan Savage,
and Geoffrey M. Voelker. Total recall: System support for
automated availability management. InNSDI, 2004.

[4] William J. Bolosky, John R. Douceur, David Ely, and Marvin
Theimer. Feasibility of a serverless distributed file system de-
ployed on an existing set of desktop PCs. InProc. SIGMETRICS,
2000.

[5] Byung-Gon Chun, Frank Dabek, Andreas Haeberlen, Emil Sit,
Hakim Weatherspoon, M. Frans Kaashoek, John Kubiatowicz,
and Robert Morris. Efficient replica maintenance for distributed
storage systems. InNSDI, 2006.

[6] F. Dabek, J. Li, E. Sit, J. Robertson, M. Kaashoek, and R. Morris.
Designing a dht for low latency and high throughput, 2004.

[7] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran. Ubiqui-
tous Acess to Distributed Data in Large-Scale Sensor Networks
through Decentralized Erasure Codes. InProc. IEEE/ACM
Int. Symposium on Information Processing in Sensor Networks
(IPSN), April 2005.

[8] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran. Decen-
tralized erasure codes for distributed networked storage.In IEEE
Trans on Information Theory, June 2006.

[9] A.G. Dimakis, P.B. Godfrey, M.J.Wainwright, and K. Ramchan-
dran. Netword coding for distributed storage systems. In
Proceedings of IEEE INFOCOM (to appear), 2007.

[10] C. Fragouli, J.Y. Le Boudec, and J. Widmer. On the benefits of
network coding for wireless applications.NetCod, 2006.

[11] C. Gkantsidis and P. Rodriguez. Network coding for large scale
content distribution.Proceedings of IEEE Infocom, 2005.

[12] Saikat Guha, Neil Daswani, and Ravi Jain. An experimental study
of the Skype peer-to-peer VoIP system. InIPTPS, 2006.

[13] T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros, J.Shi, and
B. Leong. A random linear network coding approach to multicast.
Submitted for publication, IEEE Trans. Info. Theory, 2006.

[14] A. Kamra, J. Feldman, V. Misra, and D. Rubenstein. Growth
codes: Maximizing sensor network data persistence.ACM SIG-
COMM, 2006.

[15] S.-Y. R. Li, R. W. Yeung, and N. Cai. Linear network coding.
IEEE Trans. on Information Theory, 49:371–381, February 2003.

[16] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and
J. Kubiatowicz. Pond: the OceanStore prototype. InProc.
USENIX File and Storage Technologies (FAST), 2003.

[17] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon,
and J. Kubiatowicz. Maintenance-free global data storage.IEEE
Internet Computing, pages 40–49, September 2001.

[18] R. Rodrigues and B. Liskov. High availability in DHTs: Erasure
coding vs. replication. InProc. IPTPS, 2005.

[19] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A
Measurement Study of Peer-to-Peer File Sharing Systems. In
Proc. MMCN, San Jose, CA, USA, January 2002.

[20] Jeremy Stribling. Planetlab all pairs ping. http://infospect.planet-
lab.org/pings.

[21] D. Wang, Q. Zhang, and J. Liu. Partial network coding: Theory
and application for continuous sensor data collection.Fourteenth
IEEE International Workshop on Quality of Service (IWQoS),
2006.

[22] Hakim Weatherspoon and John D. Kubiatowicz. Erasure coding
vs. replication: a quantitiative comparison. InProc. IPTPS, 2002.

[23] C. Wu and B. Li. Echelon: Peer-to-peer network diagnosis with
network coding. Fourteenth IEEE International Workshop on
Quality of Service (IWQoS), 2006.

[24] X. Zhang, G. Neglia, J. Kurose, and D. Towsley. On the benefits
of random linear coding for unicast applications in disruption
tolerant networks.Second Workshop on Network Coding, Theory,
and Applications (NETCOD), 2006.

6

