
On the Price of Heterogeneity in Parallel Systems

P. Brighten Godfrey and Richard M. Karp
Computer Science Division, UC Berkeley

Berkeley, CA 94720
{pbg,karp}@cs.berkeley.edu

September 23, 2007

Abstract

Suppose we have a parallel or distributed system whose nodeshave limitedcapacities, such as processing speed,
bandwidth, memory, or disk space. How does the performance of the system depend on the amount of heterogeneity
of its capacity distribution? We propose a general framework to quantify the worst-case effect of increasing hetero-
geneity in models of parallel systems. Given a cost functiong(C,W) representing the system’s performance as a
function of its nodes’ capacitiesC and workloadW (such as the makespan of an optimum schedule of jobsW on
machinesC), we say thatg hasprice of heterogeneityα when for any workload, cost cannot increase by more than
a factorα if node capacities become arbitrarily more heterogeneous.The price of heterogeneity also upper bounds
the “value of parallelism”: the maximum benefit obtained by increasing parallelism at the expense of decreasing
processor speed. We give constant or logarithmic bounds on the price of heterogeneity of several well-known job
scheduling and graph degree/diameter problems, indicating that in many cases, increasing heterogeneity can never be
much of a disadvantage.

1 Introduction

Parallel and distributed systems have become increasinglyheterogeneous in recent years. Rather than running on
clusters or supercomputers composed of identical nodes, many modern distributed applications—including peer-to-
peer systems, grid computing [7], and applications runningon testbeds like PlanetLab [1]—use nodes which span
the Internet and are administered by different entities. Asa result, these nodes differ in many dimensions, such
as available bandwidth, processor speed, disk capacity, security, and reliability. Even within a single node, future
multi-core processors may be heterogeneous in terms of processor speeds or instruction sets of the cores on a single
chip [14,16].

Given this diverse set of environments, it is useful to understand how characteristics of the participating nodes
affect performance of the system. In this paper, we take a step towards that goal in the context of parallel systems
which can be modeled by associating acapacitywith each node: that is, a certain amount of a limited resource such
as processing speed, bandwidth, memory, or disk space. We ask, how does the performance of the system depend on
the amount of heterogeneity of its capacity distribution?More concretely, in distributed systemA, all nodes have the
same capacity; systemB has the same total capacity but there is higher variance among the nodes’ capacities. DoesA
or B perform better?

The answer, of course, is “yes”: either system may perform better, depending on the particular system, its work-
load, and its notion of performance. For example, if we are inthe business of routing packets in an overlay network
and capacity corresponds to the number of neighbors a node can maintain, we might construct a logarithmic-diameter
network in the homogeneous case but a star graph with diameter 2 in the extreme case where one node has most of the
system’s capacity. Thus, the latency of routes through the overlay network will be lower in the latter, more heteroge-
neous scenario. On the other hand, consider a cluster running a simulation consisting of ten parallel jobs which have
equal computational requirements. Ten 1000 MHz processorscan take one job each and complete the jobs in (say)
1 second. But in the more heterogeneous system with one 5.5 GHz processor and nine 500 MHz processors, we could
either put at least one job on a slow processor, or all jobs on the fast processor; in either case, the completion time is
about 2 seconds.

1

Can we generalize at all, then, about the effect of heterogeneity? In many cases, basic intuition or observing
behavior at extreme points, such as in the overlay example above, does give a good sense of whether higher variation
in capacity improves performance. However, such back-of-the-envelope calculations cannot provide the following:

1. Justified generalizations.For example, when processing a batch of jobs, a common intuition may be that since
we have more valuable, high-capacity nodes, even with constant total capacity, greater heterogeneity is helpful.
The example of a 10-processor cluster above shows a case where that is not quite correct. By how much can
that intuition possibly be violated?

2. Comparison across systemsto gain insight about the structure of optimization problems. What characteristics
of a problem determine whether heterogeneity is generally good for it?

These questions are best answered in a quantitative framework which can model the effect of heterogeneity on many
systems. Although some particular systems have been studied (see Section 3), to the best of our knowledge a general
model has not been proposed. In this paper, we propose one such model and show several basic results within it. In
many cases, we can say that increasing heterogeneity can never be very detrimental.

Model. After using majorization to quantify “amount of heterogeneity”, we study what we call theprice of hetero-
geneity (PoH). Informally, a cost functiong(C,W) describing a system’s performance has price of heterogeneity α
when for any workloadW and capacitiesC, cost cannot increase by more than a factorα if C becomes arbitrarily
more heterogeneous. In the job scheduling example,W specifies the job lengths,C specifies the processor speeds, and
g(C,W) is the makespan: the minimum completion time of any scheduleof jobsW on processorsC.

The price of heterogeneity characterizes the worst-case increase in cost due to increasing heterogeneity, which
can address Question 1 above. For example, if heterogeneityalways helps, then the price of heterogeneity of the cost
function is 1. At a high level, we could hope to classify a parallel system’s price of heterogeneity as being either
constant, in which case increasing heterogeneity can never be much ofa disadvantage, orunbounded, indicating that
increasing heterogeneity can be quite detrimental. By classifying multiple systems in this way, we may begin to answer
Question 2.

In addition to providing theoretical insight, if we have a cost function that is a good model of a real system, a
practical application of the price of heterogeneity is to provide test cases that are provably close to the worst possible
capacity distribution. This is useful, for example, when testing a system which the designer wishes to be deployable
in a wide range of (possibly unknown) capacity distributions. In Section 10, we will discuss one such case, load
balancing in distributed hash tables.

Connection with parallelism. An important special case restricts capacities so there aremnodes of capacityn/mand
n−mof capacity 0. In this case, increasing heterogeneity (according to the definition we will give in Section 2) corre-
sponds to decreasingm, and thus decreasing parallelism. As a consequence, the price of heterogeneity upper bounds
the “value of parallelism”: the maximum benefit obtained by increasing parallelism at the expense of decreasing pro-
cessor speed. In queueing systems, it is well known that parallelism can be highly valuable (see Section 3). Many of
our results will address this question in other scheduling models by upper-bounding the price of heterogeneity.

Results. Our bounds on the price of heterogeneity are summarized in Table 1. In this paper we focus on scheduling
problems, but we also give a network design example to show the generality of the model. Most of the upper bounds are
obtained via what we call the Simulation Lemma, which shows how to use one set of capacities to “simulate” another.
This lemma may also be useful in contexts other than the priceof heterogeneity; for example, an easy corollary is that
for any fixed set of capacities, as job lengths become arbitrarily more homogeneous, optimal makespan can increase
by a factor of 2−o(1) and no more.

In addition, we show two lower bounds. First, in a model motivated by queueing systems, we observe that if jobs
have release times before which they cannot be executed and we wish to minimize average or maximum job latency,
the price of heterogeneity isΩ(k) when job sizes are in[1,k]. Second, we separate precedence constrained scheduling
(PCS) from the scheduling problems with known constant price of heterogeneity by showing that the simulation
method can lengthen makespan by a factor ofΘ(n), intuitively because of dependencies between jobs on different
processors. An interesting and apparently nontrivial openquestion is whether PCS hasΘ(1) price of heterogeneity.

In summary, the “batch” scheduling problems which we study,where all jobs arrive at time 0, have low price of
heterogeneity (and hence, little value of parallelism). Even precedence and resource constrained scheduling—which
provide a fairly rich set of constraints that can model, for example, relative ordering of jobs and the requirement of
jobs to hold shared locks—haveO(logn) PoH. On the other hand, the queueing-motivated scheduling with release
times problem has unbounded PoH, even forn = 2.

2

Problem Price of heterogeneity Reference

Minimum makespan scheduling = 2−1/n Theorem 2
Scheduling on related machines, various objective functions O(1) Corollaries 1, 2

Precedence constrained scheduling (PCS), general jobs O(logn) Corollary 3
Precedence constrained scheduling, unit-length jobs ≤ 16 Corollary 6

Resource constrained scheduling ≤ PoH of PCS Theorem 5
Scheduling with release times, job lengths∈ [1,k] Ω(k) Theorem 6

Minimum network diameter, bounded degree ≤ 2 Theorem 7

Table 1: Bounds on the price of heterogeneity shown in this paper.

The rest of this paper is as follows. We present our model in Section 2 and related work in Section 3. We introduce
the Simulation Lemma in Section 4, and bound the price of heterogeneity of various cost functions in Sections 5-9. In
Section 10, we discuss a scenario in which our results provide a worst case for testing. We conclude in Section 11.

2 Model

To define what it means for one capacity distributionC′ to be more heterogeneous than another distributionC, we use
themajorizationpartial order. Given two nonnegative vectorsC = (c1, . . . , cn) andC′ = (c′1, . . . ,c

′
n), we say thatC′

majorizes C, writtenC′ �C, when

∀k
k

∑
i=1

c′[i] ≥
k

∑
i=1

c[i] and
n

∑
i=1

c′i =
n

∑
i=1

ci ,

wherec[i] denotes theith largest component ofC. Note the implicit assumption that elements of the vector represent
the same “type” of capacity, so two elements with the same amount of capacity are equivalent.

Majorization is a standard way to compare the imbalance of distributions; see [15] for a general reference. Some
of its properties are as follows. Restricted to vectors with∑n

i=1ci = n, majorization defines a partial order whose
bottom⊥= (1, . . . ,1) is the homogeneous distribution, and whose top⊤= (n,0, . . . ,0) is the centralized distribution.
Two other measures of heterogeneity are variance var(C) = 1

||C|| ∑
n
i=1(ci − ||C||/n)2 and negative entropy−H(C) =

∑n
i=1ci log2ci . Although variance and entropy disagree on the ordering of vectors in general, majorization is consistent

with both, in the sense thatC′ �C implies var(C′)≥ var(C) and−H(C′)≥−H(C).
For our purposes, acost functionis a functiong : C ×W → R

+, whereC ⊆ R
n is the set of legal node capacity

vectors andW is arbitrary additional problem-specific information. Typically, g(C,W) will represent the cost of the
optimal solution to some combinatorial problem with node capacitiesC and workloadW. However, one could also
examine, for example, the cost of approximate solutions produced by a particular algorithm. We can now define our
main metric.

Definition 1 Theprice of heterogeneity(PoH) of a cost function g: C ×W →R
+ is

sup
W,C,C′: C�C′

g(C′,W)

g(C,W)
,

where W∈W and C,C′ ∈ C .

A PoH of 5/4 would say that for any capacitiesC andC′ �C, distributionC′ can handle any workload with cost at
most 25% higher thanC. That is, as heterogeneity increases, performance cannot get much worse.

Price of heterogeneity can be viewed as a generalization of Schur concavity. A functiong is Schur concave
whenC′ � C implies g(C′) ≤ g(C). One could say thatg is α-approximately Schur concavewhenC′ � C implies
g(C′)≤ α ·g(C). Theng(C,W) has PoHα if and only if g(C,W) is α-approximately Schur concave inC for everyW.

The price of heterogeneity naturally brings to mind the “price of homogeneity”: the worst-case increase in cost as
capacities become morehomogeneous. It is easy to see that, for the cost functions considered in this paper, increasing
homogeneity can be quite harmful. In any of the scheduling problems, replacing machine speeds(n,0, . . . ,0) with the

3

more homogeneous speeds(1,1, . . . ,1) results in a factorn slowdown when processing any single job. We therefore
focus on the price of heterogeneity in this work, but note that it would be interesting to find natural situations in which
the price of homogeneity yields useful insight.

3 Related Work

In many systems, it has been recognized that a heterogeneouscapacity distribution is significantly preferable to a
homogeneous one. For example, heterogeneity in the participating nodes’ bandwidth constraints can reduce route
lengths in distributed hash tables (DHTs) [10, 18] and in unstructured peer-to-peer file sharing systems [4], and can
improve load balance in DHTs [9]. In supercomputing, designs using a few fast processors and many slower proces-
sors have been evaluated against homogeneous systems [2, 3]. These studies generally look at specific capacity and
workload distributions. Our model is complementary since we examine the worst case over all capacity distributions
and workloads.

Closer to our model, Yang and de Veciana [23] studied a branching process model of a BitTorrent-like content
distribution system in itstransientphase, such as during the arrival of a flash crowd. The analysis showed that
expected service capacity increases as the distribution ofnode bandwidth becomes more heterogeneous, in the sense
of increasing convex orderings (which generalize majorization to random variables).

As mentioned in the introduction, an important special caseof our model is when capacities are restricted so that
there arem nodes of capacityn/m andn−m of capacity 0. Price of heterogeneity upper-bounds the increase in cost
asm decreases. In queuing theory, a well known result is that among M/M/m queues (m servers of speedn/m with
exponential job service times),m= 1 is optimal [20]. However, for various other job service time distributions, mean
response time may be minimized whenm> 1 (see [22] and the references therein). Intuitively, this is because having
several servers keeps many small jobs from being held up by one big job. This corresponds to the super-constant price
of heterogeneity of scheduling with release times (Section8).

4 The Simulation Lemma

A natural way to show that the heterogeneous capacitiesC′ are as good as the more homogeneous capacitiesC is to
“simulate”C usingC′. More specifically, we would assignC-nodes toC′-nodes according to somef : {1, . . . ,n} →
{1, . . . ,n}, and show that eachC′-node i can “simulate” the work previously performed by the subset of C-nodes
f−1(i). This is a fairly restrictive technique which cannot capture the structure important to some cost functions (see
especially Section 6). Nevertheless, we will see that the simulation technique is applicable to a number of important
problems. To prepare for those results, in this section we use the simulation technique to produce convenient sufficient
conditions to obtain aO(1) PoH (Theorem 1).

For most natural cases, a prerequisite for the simulation technique to succeed is that the total capacity simulated
by eachC′-nodei is not much more than its own capacityc′i :

Definition 2 For capacity vectors C and C′ �C, anα-simulation ofC by C′ is a function f: {1, . . . ,n} → {1, . . . ,n}
such that∑ j∈ f−1(i) c j ≤ αc′i , for all i.

It is NP-complete to decide whether a 1-simulation exists (see Appendix A). The main result of this section is that a
(2−1/n)-simulation always exists.

Lemma 1 (Simulation Lemma) For any capacity distributions C and C′ �C, a (2−1/n)-simulation exists and can
be found in time O(nlogn).

The bound is exactly tight, as exhibited in Figure 1. In the remainder of this section, we prove the lemma, and then
use it to provide sufficient conditions for a cost function tohave constant price of heterogeneity (Theorem 1). In later
sections, we will see that a number of optimization problemssatisfy those conditions.

Proof: Let α = 2− 1
n. The following algorithm produces anα-simulationf : {1, . . . ,n}→{1, . . . ,n}. Begin by sorting

the two capacity vectors in decreasing order. Maintain a vector of available capacities A= (a1, . . . ,an). Initially,
A = (0, . . . ,0). For eachi = 1 ton, perform the following steps:

1. Setai ← c′i .

4

...

...

...

...1

C′ =

C =

1

2
α

1
α

2
α

...

...

...
...

...

...1 1

C′ =

C =

1 1

n
α

1
α

1
α

Figure 1: Two families of examples showing the tightness of the Simulation Lemma. Hereα = 2− 1/n. In both
examples, every assignment ofC to C′ gives some element ofC′ at leastα times its capacity.

2. Let j ∈ {1, . . . , i} be such thata j ≥ ci/α.

3. Setf (i)← j anda j ← a j −ci/α.

The algorithm can be implemented inO(nlogn) time by storingA in a heap and takingj to be the maximum element.
It remains to be shown that (1) in each iteration, a suitablej satisfyinga j ≥ ci/α can be found, and (2) the resultingf
is anα-simulation.

We show (1) first. After Step 1 of theith iteration, the total capacity that has been added toA is ∑i
k=1 c′k, and

the total capacity that has been subtracted is∑i−1
k=1ck/α. So the total capacity remaining inA after Step 1 of theith

iteration is

i

∑
k=1

c′k−
i−1

∑
k=1

ck

α
=

ci

α
+

i

∑
k=1

c′k−
i

∑
k=1

ck

α

≥
ci

α
+

(

1−
1
α

) i

∑
k=1

ck (sinceC′ �C)

≥
ci

α
+ i ·

(

1−
1
α

)

ci (sincec1≥ ·· · ≥ ci)

= i ·

(

ci

iα
+

(

1−
1
α

)

ci

)

.

Moreover, at stepi there are≤ i positive entries ofA, so some entry must be≥ ci
iα +

(

1− 1
α
)

ci . Plugging inα = 2−1/n
and noting thati ≤ n shows that this expression is at leastci/α. Thus, a suitablej can be found.

We now show (2),i.e., that∑i∈ f−1(j) ci ≤ αc′j for each j. Note thata j first became positive by settinga j = c′j .
Each time we setf (i)← j for somei, the capacity assigned to entryj increased byci , anda j decreased byci/α. Since
a j ≥ 0 always, the total capacity assigned toj is≤ αc′j .

Theorem 1 Suppose a cost function g satisfies the following properties:

1. g(C,W) is nonincreasing in each component of C;

2. g(C,W) is a symmetric function of the components of C;

3. g(1
2 ·C,W)≤ β ·g(C,W) for all C and W; and

4. g(D,W)≤ g(C,W), where D is formed from C by replacing components i and j with ci +c j and0, respectively,
for any C, W, i, and j.

Then the price of heterogeneity of g is≤ β .

5

Proof: Let C andC′ be capacity distributions such thatC′ �C. We must showg(C′,W) ≤ β · g(C,W). Let f be a

2-simulation as given by the Simulation Lemma, in which, foreachi, 2c′i ≥ ∑ j∈ f−1(i) c j
de f
= ei . Let E = (e1, . . . ,en).

We have

g(C′,W) ≤ β ·g(2C′,W) (Property3)

≤ β ·g(E,W) (Property1 and 2C′ ≥ E)

≤ β ·g(C,W) (repeated application of Properties 2 and 4).

5 Scheduling on Related Machines

We now apply the results of the previous section to the problem of scheduling on related machines. We are given a set
J of jobs, each with a lengthℓ(j), and ann-vectorC of processor speeds. We must schedule the jobs on ourn machines
so that each machine is executing at most one job at any time. Machinei completes each jobj in time ℓ(j)/ci , so if it
is given jobsJi , it can finish its jobs in timeti = ℓ(Ji)/ci , whereℓ(J) := ∑ j∈J ℓ(j). The most common measure of the
cost of a schedule is itsmakespan: the time until the last job (equivalently, processor) finishes. We begin by analyzing
the price of heterogeneity of the cost functiong(C,J), defined as the minimum makespan of any schedule of jobsJ
on processorsC (Section 5.1). We then generalize that result (Sections 5.2and 5.3) before noting a complementary
property of the distribution of job lengths (Section 5.4).

5.1 Minimum Makespan Scheduling

This section illustrates the basic technique we will use in later bounds on the PoH. For concreteness of exposition, we
use the Simulation Lemma directly, rather than Theorem 1. Unlike our later results, in this case we provide matching
lower and upper bounds. The lower bound transfers from that of the Simulation Lemma (Figure 1) because both the
lemma and the makespan consider the maximum amount of work assigned to a machine.

Before giving the main theorem of this section, we introducea simple but important fact:

Fact 1 For any schedule of jobs on processors of speeds c1, . . . ,ck (“parallel schedule”), there is a serial schedule of
those jobs on a single processor of speed c1 + · · ·+ ck (“serial schedule”) such that each job completes before or at
the same time as it did in the parallel schedule.

Proof: Schedule jobs on the single processor in order of their completion time in the parallel schedule, with ties broken
arbitrarily. Consider any jobj and suppose its completion time in the parallel schedule ist. In the parallel schedule,
the total length of all jobs completed by timet must be≤ ∑k

i=1t · ci. Then the new schedule completes these in time
≤
(

∑k
i=1 t ·ci

)

/(c1 + · · ·+ck) = t.

Theorem 2 The PoH of minimum makespan scheduling is2−1/n.

Proof: We begin with the upper bound. Given any machine speedsC andC′ � C, and any schedule of jobsJ on
machinesC with makespanM, it is sufficient to produce a schedule of the jobs on theC′-machines with makespan 2M.

Suppose jobsJk ⊆ J are scheduled on machinek in theC-schedule. Letf : C→C′ be the mapping defined by the
Simulation Lemma. For eachk, schedule jobsJk onC′-machinef (k). Now letF(i) := f−1(i) be the set ofC-machines
mapped toC′-machinei, and lets= ∑k∈F(i) ck be the total speed of these machines. By Fact 1, a machine of speeds
could complete the jobs assigned toC′-machinei in time≤M. By the Simulation Lemma,c′i ≥ s/(2−1/n), so each
C′-machinei completes its jobs in time≤ (2−1/n)M.

To show the lower bound, we can use either pair of capacity vectors in Figure 1, in both cases withn unit-length
jobs. The reader can verify thatOPT(C,J) = 1, butOPT(C′,J) ≥ 2−1/n.

5.2 General Objective Functions of Job Completion Times

Fact 1 is actually much stronger than was necessary to bound the makespan: it bounds the completion time ofeach
individual job, not just the last. This property lets us analyze a large class of objective functions.

6

Let h : R
m→ R

+ be a function of the job completion times. We sayh is β -boundedwhenh(2t)≤ β ·h(t) for all
t. Examples of 2-bounded objective functions sometimes usedto evaluate the quality of a schedule are the maximum

and mean job completion time and theLp-norm of the job completion times,i.e., h(t) =
(

∑m
i=1 t p

i

)1/p, for p≥ 1. The
squared completion time,h(t) = ∑i t

2
i , is 4-bounded. The objective functionh may be asymmetric, as is possible in

the case of weighted mean job completion time, which for any weighting of the jobs is 2-bounded.

Corollary 1 Suppose h: R
m→ R

+ is a nondecreasing,β -bounded function of the job completion times. Let g(C,J)
be the minimal value of h over all schedules of jobs J on machines C. Then g has PoH≤ β .

Proof: We apply Theorem 1. Property 1 results from the fact that job completion times are inversely proportional to
processor speed andh is nondecreasing. Property 2 is true since optimal job completion times do not depend on the
order in which the machines are listed. Property 3 follows from β -boundedness ofh, and Property 4 follows from
Fact 1 and the fact thath is nondecreasing.

5.3 General Objective Functions of Machine Completion Times

We may similarly consider bounded functionsh of the machinecompletion times. Here, following Theorem 1, we
require thath is a symmetric function of its arguments. In any case, since the PoH compares instances with the same
set of jobs but a different set of machines, giving machines identities makes less sense than giving jobs identities as
the previous section’s asymmetry allowed.

Corollary 2 Suppose h: R
n→ R

+ is a nondecreasing symmetricβ -bounded function of the machine completion
times. Let g(C,J) be the minimal value of h over all schedules of jobs J on machines C. Then g has PoH≤ β .

Proof: Again applying Theorem 1, Property 1 is satisfied as in Corollary 1. Properties 2 and 3 follow from symmetry
andβ -boundedness, respectively, ofh. Finally, Fact 1 shows that when merging machines, the completion time of the
last job does not increase, so the mergedmachine’scompletion time must be at most that of one of the machines it
replaced. This combined with the fact thath is nondecreasing satisfies Property 4.

An interesting open problem would be to obtain tighter bounds for theLp-norm of machine completion times as a
function of p. For theL1-norm in particular, the PoH is 1 since the optimal assignment places all tasks on the fastest
machine, and that machine is always at least as fast inC′ as inC.

5.4 A Complementary Result

We observe that the Simulation Lemma can also be used to describe the effect of heterogeneity of job length distri-
butions, in a way closely analogous to the price of heterogeneity. Theorem 2 showed that as capacitiesC become
more heterogeneous, the minimum makespanOPT(C,J) can’t become much worse, for any fixed job lengthsJ—thus
confirming, within a factor of 2, the intuition that more heterogeneous capacities are better. Similarly, in this section
we show that asthe job lengthsbecome morehomogeneous, the makespan can’t become much worse, for any fixed
node capacities—thus confirming, within a factor of 2, the intuition that more homogeneous job lengths are better.

Theorem 3 Let J and J′ be vectors of m job lengths with J′ � J. For any C, OPT(C,J)≤ (2−1/m) ·OPT(C,J′).

Proof: Let f : J→ J′ be a(2−1/m)-simulation, which exists by the Simulation Lemma. Then ifJ′-job j is executed
on machinei in the optimal schedule, we place theJ-jobs f−1(j) on machinei. Sincef is a(2−1/m)-simulation, this
increases total length of jobs placed oni, and hence the completion time of any machine, by at most a factor 2−1/m.

Examples analogous to those of Figure 1 show a matching lowerbound for the above theorem: that is, there exist
vectors ofm jobsJ andJ′ � J and node capacitiesC for whichOPT(C,J) = (2−1/m) ·OPT(C,J′).

6 Precedence Constrained Scheduling

In the precedence constrained scheduling (PCS) problem [8], we are given node capacitiesC, a setJ of jobs, a length
ℓ(j) for each j ∈ J, and a partial order≺J on J. We must schedule the jobs on the nodes as before, with the added

7

Jobs

...

1

2

...

n

Nodes

k

k2

kn

Figure 2: An instance of PCS on which the simulation technique fails.

constraint that ifj1≺J j2 then job j1 must complete by the timej2 begins. The cost is the minimum makespan of such
a schedule.

The key difficulty in transferring the simulation techniqueto PCS lies in adapting Fact 1. When merging the work
of two machines of capacitiesc1 andc2 into one machine of capacityc1 +c2, it is no longer sufficient to show that the
completion timeof each job does not increase. To satisfy precedence constraints without a global modification of the
schedule, one would have to devise a schedule for which thestart timeof each job does not decrease.

In fact, we show that the direct application of the simulation technique cannot possibly succeed: there are instances
for which having eachC′-machine perform the work of some subset of theC-machines must result in at least a factor
n/4 inflation of the makespan(Theorem 4). This is perhaps surprisingly bad, since one can obtain a factor n inflation
by putting all the jobs on the single fastest machine, completely ignoring the othern− 1 machines! Intuitively, the
simulation technique performs poorly since mapping several C-machines onto oneC′-machine reduces parallelism.
The result is that a sequence of short jobs must occasionallybe interrupted by long jobs, during which time other
machines have to remain idle while waiting for the short jobsto finish.

However, the simulation technique can be applied in an LP relaxation of PCS [5], intuitively because that LP lets
a single machine run multiple jobs in parallel. This produces anO(logn) upper bound on the PoH(Corollary 3) . We
can also show an analog of Fact 1 in the special case that job lengths vary by at most a constant factor(Corollary 6) .

6.1 A Lower Bound for the Simulation Technique

The following theorem shows that there are PCS workloads forwhich having eachC′-machine perform the work of
some subset of theC-machines must result in a factorn/4 inflation of the optimal makespan.

Theorem 4 There exist capacity vectors C andC′�C and an instance(C,J, ℓ,≺J) of precedence constrained schedul-
ing with an optimal schedule of makespan OPT which maps jobs to machines according to h: J→ {1, . . . ,n}, such
that for any f : {1, . . . ,n} → {1, . . . ,n}, scheduling instance(C′,J, ℓ,≺J) by placing job i on machine f(h(i)) has

makespan≥ 1−o(1)
4 ·n ·OPT.

Proof: We takeC = (1, . . . ,1) andC′ = (2, . . .2,0, . . . ,0), i.e. n/2 machines of speed 2. The problem instance is as
follows. We haven groups of jobs, indexed 1 throughn. Group i consists ofkn−i jobs of lengthki . We choose a
convenientk later. The optimalC-schedule places groupi on machinei, as shown in Figure 2. The set of precedence
constraints is the maximum set for which the above schedule is valid. That is, we have a constraintj1→ j2 iff job j1
completes by the time jobj2 starts. Note that the resulting makespan on theC-machines iskn, and this is optimal since
no machine is idle until all jobs are complete.

Now suppose that we map theC-machines toC′-machines according to somef : {1, . . . ,n} → {1, . . . ,n}, and we
restrict ourselves to executing the group-i jobs onC′-machinef (i) as in the theorem statement. We seek to lower-bound
the makespan of any such schedule.

Define a group asobstructingif it is assigned byf to a machine which is also assigned a group of smaller jobs.
Let g1, . . . ,gm be the indexes of the obstructing groups, withg1 ≤ ·· · ≤ gm. Notem≥ n/2 since there aren groups
and onlyn/2 machines with positive capacity. Lett(gi) be the time spent executing groupgi during which no job
from any larger obstructing group is being executed. Note that the makespan of the schedule is≥ ∑m

i=1 t(gi). We now
lower-bound eacht(gi). First we need a key fact:

8

Fact 2 While any job from an obstructing group gi is executing, at most2kgi− j−1 jobs in any smaller-indexed group
j < gi can execute on any other machine.

Proof: Let x be agi job, and letD be the set of group-j jobs executed on any machine duringx. We wish to upper-
bound|D|.

Sincegi is obstructing, there is some smaller group on the same machine. LetY be the set of those smaller jobs.
To handle boundary cases cleanly, augmentY with two “marker jobs”γ1 andγ2, both of zero length, withγ1 at the
beginning of the chain of dependencies inY andγ2 at the end. We may assume w.l.o.g. thatγ1 is the first job executed
on its machine andγ2 is the last.

Since a machine can only execute one job at a time, there existtwo jobsy1,y2 ∈ Y such thaty1’s immediate
successor isy2, y1 is executed beforex, andx is executed beforey2. Thus, sincey1 has completed whenx starts,D
cannot include any jobs on whichy1 depends. Similarly, sincey2 has not yet completed,D cannot include any jobs
which depend ony2. Thus,D includes only group-j jobs that, according to the precedence constraints, can execute
concurrently withy1 or y2. The total length of such jobs is at most the length ofy1 plus the length ofy2, which is
≤ 2kgi−1. Since each group-j job has lengthk j , we have|D| ≤ 2kgi−1/k j = 2kgi− j−1, as desired.

Now consider some obstructing groupg j . By Fact 2, the number ofg j -jobs executed during a job of lengthkgi is
≤ 2kgi−g j−1. Since there arekn−gi jobs of lengthkgi , the total number ofg j -jobs executed during longer obstructing
jobs is

m

∑
i= j+1

kn−gi ·2kgi−g j−1 ≤ 2
n

∑
i= j+1

kn−g j−1 ≤ 2n ·kn−g j−1.

Since there arekn−g j group-g j jobs to begin with, the number of group-g j jobs not executed during longer obstructing
jobs is≥ kn−g j −2n · kn−g j−1 = (1−o(1))kn−g j for k = n2 (recallk is arbitrary). The time per job iskg j /2 since all
C′-machines have speed 2. Thus, we have thatt(g j)≥ (1−o(1))kn−g j ·kg j /2 = 1

2(1−o(1))kn = 1
2(1−o(1)) ·OPT.

Since this is true for all obstructing groups, we have that the makespan of theC′-schedule is at least∑m
j=1 t(g j)≥

m· 1
2(1−o(1)) ·OPT. As noted above,m≥ n/2, which proves the theorem.

6.2 Upper Bounds

We begin with an upper bound for the general case of PCS. Chudak and Shmoys [5] gave a linear programming
relaxation of PCS which formed the basis of theirO(logn)-approximation algorithm, which is the best known. The
full proof appears in Appendix B.

Corollary 3 The PoH of precedence constrained scheduling is O(logn).

Proof: (Sketch) The LP relaxation does not include the constraint that a machine executes at most one job at a time.
It is thus easy for one fast machine to simulate the work of several slow machines, so we can apply the Simulation
Lemma to show that the optimal solutions to the LP haveO(1) PoH. By the main result of [5], the optimal solution to
PCS is at mostO(logn) times the LP’s solution.

We next note several special cases where bounds can be obtained using straightforward techniques. The first the-
orem says that PCS has a property which is necessary, but not sufficient, forO(1) PoH: the homogeneous distribution
is within a constant factor of the worst case.

Corollary 4 Let OPT(C′,W) be the optimal makespan of an instance W of PCS with capacities C′. Then OPT(C′,W)
≤ 4 ·OPT(⊥,W) for any C′, where⊥= (1, . . . ,1).

Proof: Produce distributionD from C′ by setting to 0 any elementi with c′i ≤
1
2. We will show OPT(C′,W) ≤

OPT(D,W) ≤ 4 ·OPT(⊥,W). The first inequality is trivial sincec′i ≥ di∀i. For the second inequality, schedule the
jobs onD using Graham’s classic list scheduling algorithm [11] as follows: at time 0, we iteratively place any job
whose precedence constraints have been satisfied onto any idle machine of positive capacity, until no such jobs remain
or all machines are busy. Whenever any job finishes, we repeatthat greedy placement procedure. LetSbe the resulting
schedule.

To bound the length ofS, we need only slightly adapt the standard bounds used for Graham’s algorithm. Note
that there exists a precedence-constrained chain of jobsj1→ ··· → jk such that at any time duringS, either (1) all
machines are busy, or (2) some jobj i in the chain is executing. LetL1 andL2, respectively, be the total length of time

9

spent in each of these states. To boundL1, we use the fact that the amount of time that all machines can be busy is
at most the total length of all jobs divided by the total machine speed, which forD is≥ n

2; soL1 ≤
2
n ·∑ j∈J ℓ(j). But

OPT(⊥,W) ≥ 1
n ∑ j∈J ℓ(j) since the total capacity in⊥ is n, and thusL1 ≤ 2 ·OPT(⊥,W). To boundL2, note that

every job in the chainj1→ ··· → jk is executed at speed≥ 1
2, while OPT(⊥,W) must also execute this chain serially

using machines of speed 1. Thus,L2 ≤ 2 ·OPT(⊥,W) andOPT(D,W)≤ L1 +L2≤ 4 ·OPT(⊥,W).

Corollary 5 Restricted to instances with a constant number of distinct machine speeds, PCS has PoH O(1).

Proof: Follows from the result of [5] that the optimal values of the LP relaxation are withinO(1) of the true optimum
when there areO(1) distinct machine speeds.

Corollary 6 The PoH of precedence constrained scheduling with unit-size jobs is≤ 16.

Proof: Consider any capacitiesC, C′ �C, and jobsJ, and suppose the best schedule on theC-machines executes job
j on machinem(j) during [t(j), t(j)+ 1/cm(j)). It is sufficient to show aC′ schedule such that each job is executed
within [16· t(j), 16· (t(j)+1/cm(j))]. We first modify the schedule to make it more convenient: round theC-machine
speeds down to the nearest power of 2, and execute each jobj at a time which is a multiple of 1/cm(j). Each of these
modifications at most doubles the length of the schedule. LetC∗ andt∗(·) be the resulting capacities and execution
times.

Now let f be given by the Simulation Lemma. Consider the machinesf−1(i) for somei. First, we merge each pair
of machinesm1,m2 ∈ f−1(i) for which c∗m1

= c∗m2
by replacing them with a machine of capacity 2c∗m1

. We revise the
execution time of each jobj ast∗(j) = t∗(j) if m(j) = m1, andt∗(j) = t∗(j)+ 1

2 ·1/c∗m(1) if m(j) = m2. Completion
times do not increase since the machine capacity has doubled, and jobs do not overlap since eacht∗(j) was a multiple
of 1/cm(j). Iterating this merging of the machines inf−1(i), we are left withk machinesm1, . . . ,mk of unique power-
of-two capacities 21, . . . ,2k (some may be missing).

We can now schedule these machines’ jobs on a single machinem of capacity 2k+1 without changing the range
of time in which each job is executed, as follows. Break time into slots of length 1/2k+1, the length necessary to
process one job on machinem. For each jobj1 on machinemk, there are two available slots within its scheduled time
[t∗(j1), t∗(j1)+ 1/2k]. Place each job in one of these slots arbitrarily. For each job j2 on machinemk−1, there still
remain two available slots within the larger time[t∗(j2), t∗(j2)+1/2k−1], so we can recursively schedule the jobs on
machinesm1, . . . ,mk−1 in the same manner.

The Simulation Lemma guaranteesc′i ≥
1
2 ∑ℓ∈ f−1(i) cmℓ

≥ 1
2 ·2

k. We used a machine of speed 2k+1, so this increases
the makespan by a factor of 4. Combining this with our earliermodification of the schedule, the corollary follows.

7 Resource Constrained Scheduling

Resource constrained scheduling [8] (RCS) generalizes minimum makespan scheduling by adding some numberk of
resourcesspecified by the problem instance, each of which is shared across all the processors. Specifically, each jobj
is associated with not only a length but also a resource requirementr i(j) ∈ [0,1] for each resourcei ∈ {1, . . . ,k}. We
require that∑ j∈Et r i(j) ≤ 1 for all timest and each resourcei, whereEt denotes the set of jobs executing at timet. A
resource requirement could represent, for example, a required fraction of the available bandwidth on a shared network
interface, exclusive write access to a particular lock (r i(j) = 1), or read access to the lock (r i(j) = 1/|J|, where|J| is
the number of jobs).

We next upper-bound the PoH of RCS by that of PCS. In fact, we prove a somewhat stronger claim:

Theorem 5 The PoH of scheduling with both resource and precedence constraints is at most the PoH of PCS.

Proof: Suppose the PoH of PCS isα = α(n). Consider anyC, C′ �C, and workload instanceW1 which may include
both precedence and resource constraints. LetSbe an optimal schedule ofW1 on theC-machines. Construct workload
W2 from W1 by removing all resource constraints, and adding every possible precedence constraint which maintains
feasibility of S: that is, we add a precedence constraintj1→ j2 for any jobs j1, j2 such thatj1 completes by the time
j2 begins inS.

To prove the theorem we will show thatOPT(C′,W1)≤OPT(C′,W2)≤ α ·OPT(C,W2)≤ α ·OPT(C,W1), where
OPT(C,W) denotes the minimum makespan of a schedule with workloadW on machinesC. The second inequality

10

follows from the fact that the PoH of PCS isα. The third follows from the fact thatS, an optimal schedule forW1, is
also feasible forW2.

For the first inequality, it is sufficient that any feasible schedule ofW2 is also feasible forW1: that is, the added
precedence constraints are at least as restrictive as the removed resource constraints. For any feasible schedule ofW2,
let Et be the set of jobs running at any timet. We will show∑ j∈Et r i(j) ≤ 1, so that the resource constraints ofW1 are
satisfied at all times. It is sufficient to show that the jobsEt are executed concurrently at some time during schedule
S. Supposej1 is the job inEt which begins last inS, at timet1; and j2 is job in Et which finishes first inS, at timet2.
Clearly,t1 < t2 or else there would be a precedence constraintj2→ j1 in W2, which there cannot be since all jobs inEt

are run concurrently. So at time(t1 + t2)/2 in S, all jobs inEt have started, and none have finished, so all are running.

8 Scheduling With Release Times

The last scheduling problem we consider isscheduling with release times. We must produce an offline schedule of
jobsJ on machinesC as in scheduling on related machines, except that we are alsogiven for each jobj ∈ J a release
time r(j) before whichj may not be executed. Our cost functiong(C,(J, r)) is the minimaltotal response timeof any
schedule of jobsJ with release timesr on machinesC. We define total response time as the sum over all jobsj of the
time j spends in the system normalized by its length:t(j)+ℓ(j)/c−r(j)

ℓ(j) , wheret(j) is the start time of jobj andc is the
capacity of the machine on which it is run.

Similar release time constraints appear in Garey and Johnson [8], but we borrow the response time objective from
queuing systems such as [22], in which it is known that decreasing parallelism — i.e., increasing heterogeneity — can
significantly increase response time (see discussion in Section 3).

It is easy to observe that even moving from two machines to onecan be quite disadvantageous. As in PCS, reduced
parallelism causes short jobs to be held up by long jobs. The full proof appears in Appendix C.

Theorem 6 The price of heterogeneity of scheduling with release timeswith job sizes in[1,k] is Ω(k).

Proof: (Sketch)LetC= (1,1) andC′= (2,0). SupposeJ consists ofmkjobs of size 1 arriving at times 0,1, . . . , mk−1
andm jobs of sizek arriving at times 0,k,2k, . . . ,mk− k. These can be scheduled as they arrive on theC-machines,
for a total response time ofΘ(mk). Now consider scheduling these jobs on the singleC′-machine of nonzero capacity.
EitherΘ(m) long jobs are delayed for timeΘ(km) until all short jobs are complete, or each ofΘ(m) long jobs delays
Θ(k) short jobs for timeΘ(k) each. Pickingm= k2, in either case total response time isΩ(k4), compared withΘ(k3)
for theC-machines.

9 Network Construction

In designing a communication network, a typical goal is to minimize the number of hops between any two nodes,
subject to bounds on the maximum number of links incident to each node. For example, in placing physical links
between nodes of a supercomputer or cluster, each node may have a limited number of network ports. In an overlay
multicast network, each link may involve forwarding a stream of multicast data, so the degree of a node would be
limited by its available bandwidth. Constructing such networks with low maximum latency between nodes involves a
classic tradeoff [6] between degree and diameter.

In this section we will study how the optimal diameter changes as the degree bounds become more heterogeneous.
Note that in the following formulation, we do not make use of the “workload” parameter of the cost function. Also,
in the proof, we do not apply the Simulation Lemma because thecapacities specify hard constraints which cannot be
violated (Condition 3 of Theorem 1 would not be satisfied).

Definition 3 (Minimum Graph Diameter) Given positive integer degree bounds C= (c1, . . . ,cn), MinDiam(C) is the
minimum diameter of a graph G in whichdeg(i)≤ ci for all nodes i.

Theorem 7 The price of heterogeneity of MinDiam is≤ 2.

11

Proof: We will showMinDiam(C′)≤ 2·TREE(C′)≤ 2·TREE(C)≤ 2·MinDiam(C), whereTREE(·) is the minimal
height of a rooted tree with given degree bounds. The first inequality follows from the fact that a tree’s diameter is at
most twice its height, and the third follows from the fact that the shortest-path tree rooted at any node of a graph has
height at most the graph’s diameter.

For the second inequality, we will exhibit a sequence of trees T1, . . . ,Tk and a corresponding sequence of degree
boundsC = C1,C2, . . . ,Ck = C′ such that each treeTi satisfies degree boundsCi and the height of the trees do not
increase as we proceed through the sequence. Moreover, we let T1 be the optimal tree for degree boundsC, allowing
us to conclude thatTREE(C′)≤ TREE(C).

In each step, we produceCi+1 fromCi by transferring one unit of capacity (a unit bound on the degree) from some
node j to ℓ, whereci

ℓ ≥ ci
j ; a standard fact is that such a sequence of transfers always exists whenC′ �C [15]. To

produce treeTi+1 from treeTi , we first test whether level(ℓ)≤ level(j), where level(·) denotes distance from the root.
If this is not true, we transferci

ℓ−ci
j child subtrees from nodeℓ to nodej (or as many as exist ifℓ has fewer subtrees)

and swap the labeling of the nodes, so that we may assume w.l.o.g. that level(ℓ)≤ level(j). Finally, we transfer one
child subtree from nodej to nodeℓ to match the degree boundsCi+1 (if j has a subtree). Since these operations all
involve moving subtrees closer to the root, the height can only decrease.

10 A Worst Case for Testing

In this section, we discuss how the price of heterogeneity can provide a worst case for testing, using load balancers for
distributed hash tables (DHTs) as an example.

Most DHTs have been designed without knowledge of their eventual adoptive environment, which might be a
homogeneous cluster, a worldwide managed system like PlanetLab [1] (whose nodes vary in memory, disk space,
and processor speed by a factor of 4 to 141), or a peer-to-peer system like Gnutella (whose nodes vary in bottleneck
bandwidth by at least three orders of magnitude [19]). With such a wide range of target deployments, it may be
valuable to test under a capacity distribution which would bound the system’s performance inanydeployment scenario.
If we have a cost functiong(C,W) which models the system well, and ifg has PoHα, then the system’s cost under
homogeneous capacities is within a factorα of the worst case regardless of the workloadW, as long as we fix some
n and the total capacity. We next argue that in the case of DHT load balancing, it is possible to produce such a cost
functiong which is a reasonable model of the system.

Several proposed DHT load balancers [9,13] assign ownership of objects stored in the system by first partitioning
the objects amongvirtual nodes, and then placing virtual nodes on physical nodes. Each virtual node has an associated
load, such as the rate of incoming requests for objects stored on it. The goal is to assign virtual nodes to physical nodes
in a load-balanced way.

More specifically, suppose we desire to minimize the mean latency experienced by users of the system. Further
assume that the latency experienced by a user connected to physical nodei is ui/ci, whereui is the total number
of users connected toi among all of its virtual servers. If virtual serverj hasℓ(j) users, and the set of virtual
serversJi is assigned to physical nodei, we can write the users’ total latency by summing over physical nodes as
g(C,J) = ∑i ℓ(Ji)

2/ci , whereℓ(Ji) = ∑ j∈Ji
ℓ(j) = ui . The following corollary implies that if the DHT load balancer

finds assignments of virtual to physical nodes that are within a factorα of optimal, then mean latency will be within a
factor 2α of the mean latency under homogeneous capacities, for any pattern of load on the virtual servers.

Corollary 7 The price of heterogeneity of g(C,J) is≤ 2.

Proof: Applying Theorem 1, Properties 1, 2, and 3 withβ = 2 are immediate. Property 4 follows since for any
x,y,c1,c2 > 0,

(x+y)2

c1 +c2
≤

x2

c1
+

y2

c2
,

which can be shown by several lines of algebra.

1As of February 16, 2005, CoMon [17] reported memory between 0.49 and 1.98 GB and disk size between 32.7 and 264.7 GB among PlanetLab
nodes. By September 29, 2006, these ranges had increased, with 0.49-3.78 GB of memory, 25.5-363 GB of disk, and CPU speedsranging from 0.7
to 3.6 GHz. Data was unavailable for some nodes.

12

11 Conclusion

This paper has taken initial steps toward analyzing the effect of heterogeneity in distributed and parallel systems,
leaving a number of directions for future research. First, our bounds could be tightened; resolving the question of
whether precedence constrained scheduling has constant price of heterogeneity is of particular interest.

Second, one could analyze other cost functions, such as scheduling with random (rather than adversarial) work-
loads, schedules obtained by heuristics (rather than the optimal schedules), or the Nash equilibria of network conges-
tion and load balancing games [12, 21]. Note that our results, which bound the PoH of optima, can yield bounds for
the latter two items. For example, if a game has price of anarchy α and its social optima have price of heterogeneity
β , then the Nash equilibria have price of heterogeneity≤ αβ . However, it may be interesting to analyze the PoH
of common heuristics which do not give good approximation ratios. Relatedly, Suri et al [21] have asked whether
the price of anarchy itself decreases when machine speeds intheir load balancing game become heterogeneous. Our
framework may have relevance in answering that question.

A third direction is to broaden our model. Extending the notion of heterogeneity to allow nodes to have multiple
kinds of capacity, or in general more than one attribute, maybroaden its applicability.

Acknowledgments

The authors thank the anonymous reviewers for useful corrections and suggestions, and Christos Papadimitriou, Satish
Rao, Scott Shenker, Ion Stoica, David Molnar, and Lakshminarayanan Subramanian for helpful comments. This paper
is based upon work supported under a National Science Foundation Graduate Research Fellowship.

References

[1] Planetlab. http://www.planet-lab.org/.

[2] V. A. F. Almeida, I. M. M. Vasconcelos, J. N. C. Árabe, and D. A. Menascé. Using random task graphs to
investigave the potential benefits of heterogeneity in parallel systems. InProc. ACM/IEEE conference on Super-
computing, 1992.

[3] Virgílio Almeida and Daniel Menascé. Cost-performanceanalysis of heterogeneity in supercomputer architec-
tures. InProc. ACM/IEEE conference on Supercomputing, 1990.

[4] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott Shenker. Making Gnutella-like P2P
systems scalable. InProceedings of ACM SIGCOMM, 2003.

[5] F. A. Chudak and D. B. Shmoys. Approximation algorithms for precedence-constrained scheduling problems
on parallel machines that run at different speeds. InProc. 8th Ann. ACM-SIAM Symp. on Discrete Algorithms
(SODA), pages 581–590, 1997.

[6] Francesc Comellas and Charles Delorme. The (degree, diameter) problem for graphs. http://www-
mat.upc.es/grup_de_grafs/grafs/taula_delta_d.html.

[7] Ian Foster and Adriana Iamnitchi. On death, taxes, and the convergence of peer-to-peer and grid computing. In
Proc. IPTPS, 2002.

[8] Michael R. Garey and David S. Johnson.Computers and Intractability: a guide to the theory of NP-
Completeness. W. H. Freeman and Company, 1979.

[9] Brighten Godfrey, Karthik Lakshminarayanan, Sonesh Surana, Richard Karp, and Ion Stoica. Load balancing in
dynamic structured P2P systems. InProc. IEEE INFOCOM, Hong Kong, 2004.

[10] P. Brighten Godfrey and Ion Stoica. Heterogeneity and load balance in distributed hash tables. InProc. IEEE
INFOCOM, 2005.

[11] R. L. Graham. Bounds on multiprocessing timing anomalies. InBell Sys. Technical Journal, pages 1563–1581,
1966.

13

[12] E. Koutsoupias. Coordination mechanisms for congestion games. InSigact News, December 2004.

[13] Jonathan Ledlie and Margo Seltzer. Distributed, secure load balancing with skew, heterogeneity, and churn. In
Proc. INFOCOM, 2005.

[14] Geoff Lowney. Invited talk: Why intel is designing multi-core processors. InProc. SPAA, 2006.

[15] Albert W. Marshall and Ingram Olkin.Inequalities: Theory of Majorization and its Applications. Academic
Press, 1979.

[16] Jaime H. Moreno. Invited talk: Chip-level integration: The new frontier for microprocessor architecture. In
Proc. SPAA, 2006.

[17] KyoungSoo Park and Vivek Pai. Comon: A monitoring infrastructure for PlanetLab.
http://comon.cs.princeton.edu/.

[18] Sylvia Ratnasamy, Scott Shenker, and Ion Stoica. Routing algorithms for DHTs: Some open questions. InProc.
IPTPS, 2002.

[19] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A Measurement Study of Peer-to-Peer File Sharing
Systems. InProc. MMCN, San Jose, CA, USA, January 2002.

[20] S. Stidham. On the optimality of single-server queueing systems. InOperations Research, volume 18, pages
708–732, 1970.

[21] Subhash Suri, Csaba D. Tóth, and Yunhong Zhou. Selfish load balancing and atomic congestion games. InProc.
SPAA, 2004.

[22] Adam Wierman, Takayuki Osogami, Mor Harchol-Balter, and Alan Scheller-Wolf. How many servers are best
in a dual-priority FCFS system? InPerformance Evaluation, to appear.

[23] Xiangying Yang and Gustavo de Veciana. Service capacity of peer to peer networks. InProc. INFOCOM, 2004.

A NP-completeness of SIMULATION

Define the problem SIMULATION as follows: givenα ≥ 1,C, andC′ �C, is there anα-simulation ofC with C′?

Fact 3 SIMULATION is NP-complete.

Proof: Clearly the problem is in NP. To show NP-hardness we reduce from PARTITION [8]. In that problem, we are
given a setSof n positive integers, and must decide whether there exists anR⊂ S for which∑r∈Rr = 1

2 ∑s∈Ss.
Normalize the elements ofS so that∑s∈Ss = n. Set α = 1, C = S andC′ = (n

2, n
2,0, . . . ,0). If C′ � C, then

(α,C,C′) is a valid instance of SIMULATION , and it is easy to verify thatScan be partitioned in half iff there exists a
1-simulation.

If C′ 6�C, then∑k
i=1c′[i] < ∑k

i=1c[i] for somek, wherec[i] denotes theith largest component ofC. SinceC′ has only
two positive elements, this must happen fork = 1, which implies thatc1 > n

2. In that case, there can be no perfect
partition ofS, so we can map onto any “no” instance of SIMULATION .

B Proof of Corollary 3

In the mixed-integer program of Chudak and Shmoys [5], machines are divided into groups of equal speed, and jobs
are assigned to machine groups. For our purposes, we may assume w.l.o.g. that all machines have different speeds, in

14

which case the program becomes the following. Variablexk j ∈ {0,1} represents the assignment of jobj to machinek,
andt(j) represents the completion time of jobj. We seek to minimize the makespanD subject to

n

∑
k=1

xk j = 1 ∀ j ∈ J (1)

1
ck

n

∑
j=1

ℓ(j)xk j ≤ D ∀k : ck > 0 (2)

xk j = 0 ∀k : ck = 0 (3)
n

∑
k=1

ℓ(j)xk j

ck
≤ t(j) ∀ j (4)

n

∑
k=1

ℓ(j)xk j

ck
≤ t(j)− t(j ′) ∀ j ′ ≺J j (5)

t(j)≤ D ∀ j, (6)

which can be interpreted as requiring that (1) each job is on some machine, (2) each machine finishes by timeD, (3)
zero-capacity machines aren’t used, (4) the completion time of each job is at least its processing time, (5) precedence
constraints are respected, and (6) all jobs finish by timeD.

Let LP be the relaxation of this program wherexk j ∈ [0,1], and letLP(C), LP(C′), OPT(C), andOPT(C′) denote
the optimal values ofLP and of precedence constrained scheduling, with some given capacitiesC andC′ � C and
workload (J, ℓ,≺J). For anyC andC′ � C, we will show OPT(C′) ≤ O(logn) · LP(C′) ≤ 2 ·O(logn) · LP(C) ≤
O(logn) ·OPT(C). The first inequality is due to [5]; the last is due to the fact thatLP is a relaxation of PCS. We show
the second inequality by verifying the conditions of Theorem 1 for the optimal values ofLP. Properties 1 through 3
follow directly, with β = 2. For Property 4, let(xk j) be an optimal solution toLP(C), and supposec′1 = c1 + c2,
c′2 = 0, andc′k = ck for k∈ {3, . . .n}. We show(x′k j) is a feasible solution forLP(C′) with the same makespanD and
completion timest(j), where for all j, x′1 j = x1 j +x2 j , x′2 j = 0, and fork∈ {3, . . . ,n}, x′k j = xk j. Constraints (1), (3),
and (6) are obviously satisfied. To verify (4) and (5), note that the time to process a job doesn’t increase:

∑
k

ℓ(j)x′k j

c′k
= ℓ(j)

(

x1 j +x2 j

c1 +c2
+ ∑

k≥3

xk j

ck

)

≤∑
k

ℓ(j)xk j

ck
.

Finally, (2) is satisfied since

1
c′1

n

∑
j=1

ℓ(j)x′1 j =
1

c1 +c2

n

∑
j=1

ℓ(j)(x1 j +x2 j)

≤ max

(

1
c1

n

∑
j=1

ℓ(j)x1 j ,
1
c2

n

∑
j=1

ℓ(j)x2 j

)

≤ D.

C Proof of Theorem 5

Let C = (1,1) andC′ = (2,0). SupposeJ consists ofmk jobs of size 1 arriving at times 0,1, . . . ,mk−1 andm jobs
of sizek arriving at times 0,k,2k, . . . ,mk− k. These can be scheduled as they arrive on theC-machines, for a total
response time ofΘ(mk). Now consider scheduling these jobs on the singleC′-machine of nonzero capacity. For any
schedule, we have one of two cases:

In Case 1, fewer than 1/2 of the large jobs are scheduled during time[0,km]. Then≥ m/2 large jobs wait, on
average, at least timekm/2 before they are executed. After normalizing by job length,we have that the total response
time of just these jobs is≥ m

2 ·
km
2 ·

1
k = Θ(m2).

In Case 2, at least 1/2 of the large jobs are scheduled during time[0,km]. Ignoring all large jobs except these, we
can produce an optimal such schedule by settingt(j1) = r(j1) for each small jobj1, and inserting each large jobj2
at its specified timet(j2), delaying the small jobs only as much as necessary. Since each large job takes timek/2 to

15

execute on the machine of capacity 2, we must delay startingΘ(k) small jobs by timeΘ(k) each, so total response
time increases byΘ(k2). This occurs for each of≥m/2 large jobs that we insert, for a total slowdown of≥Θ(mk2).

Finally, sincem is arbitrary, takem= k2 so in either case total response time isΩ(k4), compared withΘ(k3) for
theC-machines.

16

