On the Price of Heterogeneity in Parallel Systems

P. Brighten Godfrey and Richard M. Karp
Computer Science Division, UC Berkeley
Berkeley, CA 94720
{pbg,karp}@cs.berkeley.edu

September 23, 2007

Abstract

Suppose we have a parallel or distributed system whose inadredimitedcapacities such as processing speed,
bandwidth, memory, or disk space. How does the performahtteesystem depend on the amount of heterogeneity
of its capacity distribution? We propose a general fram&tomuantify the worst-case effect of increasing hetero-
geneity in models of parallel systems. Given a cost funcg@ W) representing the system’s performance as a
function of its nodes’ capacitieS and workloadW (such as the makespan of an optimum schedule of\élm
machine<C), we say thag hasprice of heterogeneitgr when for any workload, cost cannot increase by more than
a factora if node capacities become arbitrarily more heterogenedts. price of heterogeneity also upper bounds
the “value of parallelism”: the maximum benefit obtained hgreasing parallelism at the expense of decreasing
processor speed. We give constant or logarithmic bounds@mprice of heterogeneity of several well-known job
scheduling and graph degree/diameter problems, indgcttiat in many cases, increasing heterogeneity can never be
much of a disadvantage.

1 Introduction

Parallel and distributed systems have become increashrgBrogeneous in recent years. Rather than running on
clusters or supercomputers composed of identical nodesy madern distributed applications—including peer-to-
peer systems, grid computing [7], and applications runmingestbeds like PlanetLab [1]—use nodes which span
the Internet and are administered by different entities. aA®sult, these nodes differ in many dimensions, such
as available bandwidth, processor speed, disk capacityrisg and reliability. Even within a single node, future
multi-core processors may be heterogeneous in terms oégsoc speeds or instruction sets of the cores on a single
chip [14, 16].

Given this diverse set of environments, it is useful to ustéerd how characteristics of the participating nodes
affect performance of the system. In this paper, we takemtstgards that goal in the context of parallel systems
which can be modeled by associatingapacitywith each node: that is, a certain amount of a limited resosuch
as processing speed, bandwidth, memory, or disk space. k\Va@s does the performance of the system depend on
the amount of heterogeneity of its capacity distributioi@re concretely, in distributed systefy all nodes have the
same capacity; systeBihas the same total capacity but there is higher variance @themodes’ capacities. DoAs
or B perform better?

The answer, of course, is “yes”: either system may perforttehaelepending on the particular system, its work-
load, and its notion of performance. For example, if we arébusiness of routing packets in an overlay network
and capacity corresponds to the number of neighbors a nodmagtain, we might construct a logarithmic-diameter
network in the homogeneous case but a star graph with diad atéhe extreme case where one node has most of the
system’s capacity. Thus, the latency of routes through tleelay network will be lower in the latter, more heteroge-
neous scenario. On the other hand, consider a cluster arsimulation consisting of ten parallel jobs which have
equal computational requirements. Ten 1000 MHz processordake one job each and complete the jobs in (say)
1 second. But in the more heterogeneous system with &n@&Hz processor and nine 500 MHz processors, we could
either put at least one job on a slow processor, or all jobseriast processor; in either case, the completion time is
about 2 seconds.

Can we generalize at all, then, about the effect of heterigggh In many cases, basic intuition or observing
behavior at extreme points, such as in the overlay exampieealloes give a good sense of whether higher variation
in capacity improves performance. However, such backefanvelope calculations cannot provide the following:

1. Justified generalizations.For example, when processing a batch of jobs, a commonionuitay be that since
we have more valuable, high-capacity nodes, even with aahsital capacity, greater heterogeneity is helpful.
The example of a 10-processor cluster above shows a case tiaeris not quite correct. By how much can
that intuition possibly be violated?

2. Comparison across systemt gain insight about the structure of optimization probdehat characteristics
of a problem determine whether heterogeneity is generalbgdor it?

These questions are best answered in a quantitative frarkeviich can model the effect of heterogeneity on many
systems. Although some particular systems have been dt(gbe Section 3), to the best of our knowledge a general
model has not been proposed. In this paper, we propose ohamdel and show several basic results within it. In
many cases, we can say that increasing heterogeneity canlmevery detrimental.

Model. After using majorization to quantify “amount of heterogiyie we study what we call the@rice of hetero-
geneity (PoH) Informally, a cost functiorg(C,W) describing a system’s performance has price of heteroyeaei
when for any workloadV and capacitie€, cost cannot increase by more than a factaf C becomes arbitrarily
more heterogeneous. In the job scheduling exanilspecifies the job length€, specifies the processor speeds, and
g(C,W) is the makespan: the minimum completion time of any scheafijlebsW on processor€.

The price of heterogeneity characterizes the worst-cagease in cost due to increasing heterogeneity, which
can address Question 1 above. For example, if heterogeateitys helps, then the price of heterogeneity of the cost
function is 1. At a high level, we could hope to classify a flafasystem’s price of heterogeneity as being either
constantin which case increasing heterogeneity can never be muahlisfadvantage, amboundedindicating that
increasing heterogeneity can be quite detrimental. Bysiflaag multiple systems in this way, we may begin to answer
Question 2.

In addition to providing theoretical insight, if we have astdunction that is a good model of a real system, a
practical application of the price of heterogeneity is toyide test cases that are provably close to the worst pessibl
capacity distribution. This is useful, for example, whestiteg a system which the designer wishes to be deployable
in a wide range of (possibly unknown) capacity distribusiorin Section 10, we will discuss one such case, load
balancing in distributed hash tables.

Connection with parallelism. An important special case restricts capacities so thermaes of capacity/mand
n—mof capacity 0. In this case, increasing heterogeneity (aleg to the definition we will give in Section 2) corre-
sponds to decreasing, and thus decreasing parallelism. As a consequence, tteqfrheterogeneity upper bounds
the “value of parallelism”: the maximum benefit obtained bgreasing parallelism at the expense of decreasing pro-
cessor speed. In queueing systems, it is well known thatlplsen can be highly valuable (see Section 3). Many of
our results will address this question in other schedulingets by upper-bounding the price of heterogeneity.

Results. Our bounds on the price of heterogeneity are summarizedbteTa In this paper we focus on scheduling
problems, but we also give a network design example to sheweherality of the model. Most of the upper bounds are
obtained via what we call the Simulation Lemma, which shoas to use one set of capacities to “simulate” another.
This lemma may also be useful in contexts other than the pfibeterogeneity; for example, an easy corollary is that
for any fixed set of capacities, as job lengths become arijtraore homogeneous, optimal makespan can increase
by a factor of 2- o(1) and no more.

In addition, we show two lower bounds. First, in a model matt by queueing systems, we observe that if jobs
have release times before which they cannot be executed @amdsh to minimize average or maximum job latency,
the price of heterogeneity @(k) when job sizes are ifi, k]. Second, we separate precedence constrained scheduling
(PCS) from the scheduling problems with known constantepd€ heterogeneity by showing that the simulation
method can lengthen makespan by a facto®@f), intuitively because of dependencies between jobs onrdifte
processors. An interesting and apparently nontrivial apegstion is whether PCS h@g1) price of heterogeneity.

In summary, the “batch” scheduling problems which we studyere all jobs arrive at time 0, have low price of
heterogeneity (and hence, little value of parallelism)eiprecedence and resource constrained scheduling—which
provide a fairly rich set of constraints that can model, fearaple, relative ordering of jobs and the requirement of
jobs to hold shared locks—ha¥&(logn) PoH. On the other hand, the queueing-motivated schedulitigrelease
times problem has unbounded PoH, everrfer 2.

| Problem | Price of heterogeneity| Reference |

Minimum makespan scheduling =2-1/n Theorem 2

Scheduling on related machines, various objective funstjo 0(1) Corollaries 1, 2
Precedence constrained scheduling (PCS), general jobs O(logn) Corollary 3
Precedence constrained scheduling, unit-length jobg <16 Corollary 6
Resource constrained scheduling < PoH of PCS Theorem 5
Scheduling with release times, job length&l, K| Q(k) Theorem 6
Minimum network diameter, bounded degree <2 Theorem 7

Table 1: Bounds on the price of heterogeneity shown in thiepa

The rest of this paper is as follows. We present our model ati@e2 and related work in Section 3. We introduce
the Simulation Lemma in Section 4, and bound the price ofrbgeneity of various cost functions in Sections 5-9. In
Section 10, we discuss a scenario in which our results peawidorst case for testing. We conclude in Section 11.

2 Model

To define what it means for one capacity distributi@rio be more heterogeneous than another distrib@jome use
the majorizationpartial order. Given two nonnegative vect@s= (c,..., ¢,) andC' = (cj,...,cy), we say thaC’
majorizes GwrittenC’ = C, when

k K N N
k3 cy=2 e and §c=35 o

wherecy;) denotes théth largest component &@. Note the implicit assumption that elements of the vectpresent
the same “type” of capacity, so two elements with the sameusutnaf capacity are equivalent.

Majorization is a standard way to compare the imbalancesgifidutions; see [15] for a general reference. Some
of its properties are as follows. Restricted to vectors With; ¢i = n, majorization defines a partial order whose
bottom L = (1,...,1) is the homogeneous distribution, and whoseTog (n,0,...,0) is the centralized distribution.
Two other measures of heterogeneity are variancglyat ﬁ s, (ci —|[C||/n)? and negative entropy-H (C) =
YL, cilog,ci. Although variance and entropy disagree on the orderingctfors in general, majorization is consistent
with both, in the sense th&X = C implies vafC’) > var(C) and—H(C') > —H(C).

For our purposes, eost functioris a functiong : ¢’ x # — R™, where¥ C R" is the set of legal node capacity
vectors and/ is arbitrary additional problem-specific information. Teally, g(C,W) will represent the cost of the
optimal solution to some combinatorial problem with nodpawitiesC and workloadV. However, one could also
examine, for example, the cost of approximate solutionslygpeed by a particular algorithm. We can now define our
main metric.

Definition 1 Theprice of heterogeneitfPoH) of a cost function g¢ x # — R is

sup 9(C,\W)
wcc:c<c 9(C,W) ’

where We # and CC' € €.

A PoH of 5/4 would say that for any capaciti€andC’ = C, distributionC’ can handle any workload with cost at
most 25% higher tha@. That is, as heterogeneity increases, performance caehotuch worse.

Price of heterogeneity can be viewed as a generalizatiorch@irSconcavity. A functiorg is Schur concave
whenC’ = C impliesg(C’) < g(C). One could say thag is a-approximately Schur concawehenC’ = C implies
g(C") < a-g(C). Theng(C,W) has PoHy if and only if g(C,W) is a-approximately Schur concave@for everyWw.

The price of heterogeneity naturally brings to mind the ¢prof homogeneity”: the worst-case increase in cost as
capacities become moh®mogeneoust is easy to see that, for the cost functions considerellisndaper, increasing
homogeneity can be quite harmful. In any of the schedulimdplems, replacing machine spe€dg0, . . .,0) with the

more homogeneous spegdsl,..., 1) results in a facton slowdown when processing any single job. We therefore
focus on the price of heterogeneity in this work, but noté ithaould be interesting to find natural situations in which
the price of homogeneity yields useful insight.

3 Related Work

In many systems, it has been recognized that a heterogerapasity distribution is significantly preferable to a
homogeneous one. For example, heterogeneity in the geatiicg nodes’ bandwidth constraints can reduce route
lengths in distributed hash tables (DHTSs) [10, 18] and intutsured peer-to-peer file sharing systems [4], and can
improve load balance in DHTs [9]. In supercomputing, desigsing a few fast processors and many slower proces-
sors have been evaluated against homogeneous systems TRg3 studies generally look at specific capacity and
workload distributions. Our model is complementary sin@eexamine the worst case over all capacity distributions
and workloads.

Closer to our model, Yang and de Veciana [23] studied a biaggirocess model of a BitTorrent-like content
distribution system in itdransientphase, such as during the arrival of a flash crowd. The asaffsiwed that
expected service capacity increases as the distributiooadé bandwidth becomes more heterogeneous, in the sense
of increasing convex orderings (which generalize majdidreto random variables).

As mentioned in the introduction, an important special ac#smur model is when capacities are restricted so that
there arem nodes of capacity/mandn— m of capacity 0. Price of heterogeneity upper-bounds thesas® in cost
asmdecreases. In queuing theory, a well known result is thatranM/M/m queues i servers of speed/m with
exponential job service timeg)y) = 1 is optimal [20]. However, for various other job service ¢imistributions, mean
response time may be minimized whan> 1 (see [22] and the references therein). Intuitively, thisécause having
several servers keeps many small jobs from being held up &pigrjob. This corresponds to the super-constant price
of heterogeneity of scheduling with release times (Se@jon

4 The Simulation Lemma

A natural way to show that the heterogeneous capaciese as good as the more homogeneous capa€itie$o
“simulate” C usingC’. More specifically, we would assigb-nodes toC’-nodes according to sonfe: {1,...,n} —
{1,...,n}, and show that eac@’-nodei can “simulate” the work previously performed by the subse€aodes
f~1(i). This is a fairly restrictive technique which cannot capttire structure important to some cost functions (see
especially Section 6). Nevertheless, we will see that thrikition technique is applicable to a number of important
problems. To prepare for those results, in this section wehessimulation technique to produce convenient sufficient
conditions to obtain &(1) PoH (Theorem 1).

For most natural cases, a prerequisite for the simulaticinnigue to succeed is that the total capacity simulated
by eachC’-nodei is not much more than its own capacify

Definition 2 For capacity vectors C and’C- C, ana-simulation ofC by C' is a function f: {1,...,n} — {1,...,n}
such thaty jc ;-1 ¢j < acj, forall i.

It is NP-complete to decide whether a 1-simulation existe gppendix A). The main result of this section is that a
(2—1/n)-simulation always exists.

Lemma 1 (Simulation Lemma) For any capacity distributions C and’'G- C, a(2— 1/n)-simulation exists and can
be found in time @nlogn).

The bound is exactly tight, as exhibited in Figure 1. In thma@der of this section, we prove the lemma, and then
use it to provide sufficient conditions for a cost functiorhtave constant price of heterogeneity (Theorem 1). In later
sections, we will see that a number of optimization probleaissfy those conditions.

Proof: Leta =2— % The following algorithm produces an-simulationf : {1,...,n} — {1,...,n}. Begin by sorting
the two capacity vectors in decreasing order. Maintain dorezf available capacities A= (ai,...,an). Initially,
A= (0,...,0). For each =1 ton, perform the following steps:

1. Setg <—Cf

LULE -EE - DERE DR

‘ Qls

DEEE -Bé - LéddE -mm

Figure 1: Two families of examples showing the tightnesshef $imulation Lemma. Here = 2—1/n. In both
examples, every assignment®fo C’ gives some element @ at leasta times its capacity.

2. Letje{1,...,i} be suchthat; > c/a.
3. Setf(i) — j anda; — a;—ci/a.

The algorithm can be implemented@{nlogn) time by storingA in a heap and takingto be the maximum element.
It remains to be shown that (1) in each iteration, a suitisiatisfyinga; > ¢ /a can be found, and (2) the resultirfig
is ana-simulation. _

We show (1) first. After Step 1 of thih iteration, the total capacity that has been added i® 5} _, ¢, and

the total capacity that has been subtractengZsE ck/a. So the total capacity remaining Aafter Step 1 of théth
iteration is

i i—1 i i
Ck Ci Ck
Zl Z a a kzl kZ:L a
N
> il + <1— —) ck (sinceC’' =C)
a a) &

Y

(C; (1—£) ¢ (sincecy>--->¢j)

. [c
)
ia a
Moreover, at stepthere are< i positive entries of\, so some entry must be .C_& + (1 — %) G. Pluggingina =2—-1/n
and noting that < n shows that this expression is at leagto. Thus, a suitablg can be found.

We now show (2)j.e., thaty ;- 1) G < ac’ for eachj. Note thata; first became positive by settiray = c’

Each time we set(i) «— j for somei, the capacny assigned to enfrincreased by, anda; decreased bg; /a. Smce
a; > 0 always, the total capacity assignedjtis < ac’j. []

Theorem 1 Suppose a cost function g satisfies the following properties
g(C,W) is nonincreasing in each component of C;
g(C,W) is a symmetric function of the components of C;
(-C,W) < B-g(C,W) forallCand W; and

4. g(D,W) <g(C,W), where D is formed from C by replacing components i and j withg andO0, respectively,
forany C,W, i, and j.

Then the price of heterogeneity of g<is3.

Proof: LetC andC’ be capacity distributions such th@t = C. We must showg(C',W) < B-g(C,W). Let f be a

2-simulation as given by the Simulation Lemma, in which, dachi, 2¢{ > 3 ;c-1(;) j def e. LetE = (eq,...,en).
We have

g(C,\W) B-g(2C"\W) (Property3
B-9(E,W) (Propertyland@ > E)

B-9(C,W) (repeated application of Properties 2 and 4).

IN A CIA

5 Scheduling on Related Machines

We now apply the results of the previous section to the proliescheduling on related machinéd/e are given a set
J of jobs, each with alengtf(j), and am-vectorC of processor speeds. We must schedule the jobs ommiachines
so that each machine is executing at most one job at any timehiel completes each jopin time ¢(j)/ci, so if it

is given jobs];, it can finish its jobs in timé& = £(J)/ci, wherel(J) := ¥ ;5 £(]). The most common measure of the
cost of a schedule is itmakespanthe time until the last job (equivalently, processor) fir@s. We begin by analyzing
the price of heterogeneity of the cost functig(C, J), defined as the minimum makespan of any schedule ofJobs
on processor€ (Section 5.1). We then generalize that result (Sectionabd5.3) before noting a complementary
property of the distribution of job lengths (Section 5.4).

5.1 Minimum Makespan Scheduling

This section illustrates the basic technique we will usata bounds on the PoH. For concreteness of exposition, we
use the Simulation Lemma directly, rather than Theorem 1ikEour later results, in this case we provide matching
lower and upper bounds. The lower bound transfers from thiteoSimulation Lemma (Figure 1) because both the
lemma and the makespan consider the maximum amount of wsidnesl to a machine.

Before giving the main theorem of this section, we introdac@mple but important fact:

Fact 1 For any schedule of jobs on processors of speeds G ¢k (“parallel schedule”), there is a serial schedule of
those jobs on a single processor of spegd-e- - + ¢ (“serial schedule”) such that each job completes before or a
the same time as it did in the parallel schedule.

Proof: Schedule jobs on the single processor in order of their cetigpl time in the parallel schedule, with ties broken
arbitrarily. Consider any jol) and suppose its completion time in the parallel schedulelis the parallel schedule,
the total length of all jobs completed by timhenust be< zik:lt -¢i. Then the new schedule completes these in time
< (sKat-6) /et o) =t 0

Theorem 2 The PoH of minimum makespan schedulingis1/n.

Proof: We begin with the upper bound. Given any machine sp&€dadC’ = C, and any schedule of johkon
machine<€ with makespai, it is sufficient to produce a schedule of the jobs onGhenachines with makespah/R

Suppose jobg, C J are scheduled on machikén theC-schedule. Lef : C — C’ be the mapping defined by the
Simulation Lemma. For eadt schedule jobg, onC’-machinef (k). Now letF (i) := f~1(i) be the set o€-machines
mapped tcC’-machinei, and lets= ¥ . ;) Ck be the total speed of these machines. By Fact 1, a machineedisp
could complete the jobs assigneddemachine in time < M. By the Simulation Lemmag] > s/(2—1/n), so each
C’-machine completes its jobs in time (2—1/n)M.

To show the lower bound, we can use either pair of capacitiovei Figure 1, in both cases withunit-length
jobs. The reader can verify th@PT(C,J) = 1, butOPT(C',J) > 2—1/n. [|

5.2 General Objective Functions of Job Completion Times

Fact 1 is actually much stronger than was necessary to bdwenchékespan: it bounds the completion timesath
individualjob, not just the last. This property lets us analyze a lalggsoof objective functions.

Leth: R™ — R* be a function of the job completion times. We dais 3-boundedvhenh(2t) < 3 -h(t) for all
t. Examples of 2-bounded objective functions sometimes teedaluate the quality of a schedule are the maximum

and mean job completion time and thg-norm of the job completion timesg., h(t) = (z{‘;ltip) 1/p, forp> 1. The

squared completion timé(t) = ¥;t2, is 4-bounded. The objective functibnmay be asymmetric, as is possible in
the case of weighted mean job completion time, which for aaighting of the jobs is 2-bounded.

Corollary 1 Suppose hR™ — R is a nondecreasing3-bounded function of the job completion times. LE&.g)
be the minimal value of h over all schedules of jobs J on ma&shth Then g has PoH f3.

Proof: We apply Theorem 1. Property 1 results from the fact that minmletion times are inversely proportional to
processor speed aiids nondecreasing. Property 2 is true since optimal job cetigel times do not depend on the
order in which the machines are listed. Property 3 follovesrfi3-boundedness di, and Property 4 follows from
Fact 1 and the fact thatis nondecreasing. []

5.3 General Objective Functions of Machine Completion Time

We may similarly consider bounded function®f the machinecompletion times. Here, following Theorem 1, we
require thah is a symmetric function of its arguments. In any case, sihed®oH compares instances with the same
set of jobs but a different set of machines, giving machidesiities makes less sense than giving jobs identities as
the previous section’s asymmetry allowed.

Corollary 2 Suppose hR" — R™ is a nondecreasing symmeti-bounded function of the machine completion
times. Let ¢C, J) be the minimal value of h over all schedules of jobs J on mashth Then g has PoH f3.

Proof: Again applying Theorem 1, Property 1 is satisfied as in Cargll. Properties 2 and 3 follow from symmetry
andf-boundedness, respectively fofFinally, Fact 1 shows that when merging machines, the cetiopl time of the
lastjob does not increase, so the mergedchine’scompletion time must be at most that of one of the machines it
replaced. This combined with the fact theis nondecreasing satisfies Property 4. []

An interesting open problem would be to obtain tighter baufwd thel p-norm of machine completion times as a
function of p. For theL;-norm in particular, the PoH is 1 since the optimal assigrirpéates all tasks on the fastest
machine, and that machine is always at least as fa&tas inC.

5.4 A Complementary Result

We observe that the Simulation Lemma can also be used toildesbe effect of heterogeneity of job length distri-
butions, in a way closely analogous to the price of hetereijgnTheorem 2 showed that as capacitebecome
more heterogeneous, the minimum makedp&T(C, J) can’t become much worse, for any fixed job lengthsthus
confirming, within a factor of 2, the intuition that more hetgeneous capacities are better. Similarly, in this sactio
we show that aghe job lengthdecome mordvomogeneoyshe makespan can’'t become much worse, for any fixed
node capacities—thus confirming, within a factor of 2, theition that more homogeneous job lengths are better.

Theorem 3 Let J and J be vectors of m job lengths with 3 J. For any C, OPTC,J) < (2—1/m)-OPT(C,J).

Proof: Let f : J— J' be a(2— 1/m)-simulation, which exists by the Simulation Lemma. Thedifob j is executed
on machiné in the optimal schedule, we place thgobs f ~1(j) on machine. Sincef is a(2— 1/m)-simulation, this
increases total length of jobs placedipand hence the completion time of any machine, by at mosttarfae- 1/m.
[|

Examples analogous to those of Figure 1 show a matching lbawend for the above theorem: that is, there exist
vectors ofmjobsJ andJ = J and node capaciti&s for whichOPT(C,J) = (2—1/m) - OPT(C,J').

6 Precedence Constrained Scheduling

In the precedence constrained scheduling (PCS) problenwvgBare given node capaciti€s a set] of jobs, a length
¢(j) for eachj € J, and a partial ordex; onJ. We must schedule the jobs on the nodes as before, with tredadd

Nodes Jobs

1 k

2 k2

n kn

Figure 2: An instance of PCS on which the simulation techaiigils.

constraint that iff; <3 j2 then jobj; must complete by the timp begins. The cost is the minimum makespan of such
a schedule.

The key difficulty in transferring the simulation technigePCS lies in adapting Fact 1. When merging the work
of two machines of capacities andc; into one machine of capacity + ¢, it is no longer sufficient to show that the
completion timeof each job does not increase. To satisfy precedence coristwdathout a global modification of the
schedule, one would have to devise a schedule for whicht#tretimeof each job does not decrease.

In fact, we show that the direct application of the simulatiechnique cannot possibly succeed: there are instances
for which having eaclE’-machine perform the work of some subset of Gamachines must result in at least a factor
n/4 inflation of the makespafTheorem 4). This is perhaps surprisingly bad, since one can obtaintarfadnflation
by putting all the jobs on the single fastest machine, coteplégnoring the othen — 1 machines! Intuitively, the
simulation technique performs poorly since mapping sév@maachines onto on€’-machine reduces parallelism.
The result is that a sequence of short jobs must occasiobalinterrupted by long jobs, during which time other
machines have to remain idle while waiting for the short jmbnish.

However, the simulation technique can be applied in an L&egion of PCS [5], intuitively because that LP lets
a single machine run multiple jobs in parallel. This produaeO(logn) upper bound on the PofCorollary 3). We
can also show an analog of Fact 1 in the special case thatrjgkthle vary by at most a constant fac{Gorollary 6).

6.1 A Lower Bound for the Simulation Technique

The following theorem shows that there are PCS workloadsvfoch having eacl€’-machine perform the work of
some subset of th@-machines must result in a factof4 inflation of the optimal makespan.

Theorem 4 There exist capacity vectors C anti€C and an instancéC, J, ¢, <) of precedence constrained schedul-
ing with an optimal schedule of makespan OPT which maps pbsachines according to:hJ — {1,...,n}, such
that for any f: {1,...,n} — {1,...,n}, scheduling instancéC’,J, ¢, <;) by placing job i on machine (h(i)) has
makespar> 1’+(1) -n-OPT.

Proof: We takeC = (1,...,1) andC’' = (2,...2,0,...,0), i.e. n/2 machines of speed 2. The problem instance is as
follows. We haven groups of jobs, indexed 1 through Groupi consists ofk" jobs of lengthk. We choose a
convenienk later. The optimaC-schedule places groun maching, as shown in Figure 2. The set of precedence
constraints is the maximum set for which the above schedulalid. That is, we have a constrajat— |, iff job j1
completes by the time jofy starts. Note that the resulting makespan orGhmachines i«", and this is optimal since

no machine is idle until all jobs are complete.

Now suppose that we map tlemachines t&’-machines according to sonfe {1,...,n} — {1,...,n}, and we
restrict ourselves to executing the groijpbs onC’-machinef (i) as in the theorem statement. We seek to lower-bound
the makespan of any such schedule.

Define a group asbstructingif it is assigned byf to a machine which is also assigned a group of smaller jobs.
Letgi,...,0m be the indexes of the obstructing groups, vwgih< --- < gm. Notem > n/2 since there ara groups
and onlyn/2 machines with positive capacity. LED;) be the time spent executing grogpduring which no job
from any larger obstructing group is being executed. Naaé e makespan of the schedulesig ™ ; t(gi). We now
lower-bound each(g;). First we need a key fact:

Fact 2 While any job from an obstructing group ig executing, at mogkd—i-1 jobs in any smaller-indexed group
j < g can execute on any other machine.

Proof: Letx be ag; job, and letD be the set of group-jobs executed on any machine durixgWe wish to upper-
bound|D|.

Sinceg; is obstructing, there is some smaller group on the same mechetY be the set of those smaller jobs.
To handle boundary cases cleanly, augmémtith two “marker jobs”y; andy,, both of zero length, withy; at the
beginning of the chain of dependencie¥iandy at the end. We may assume w.l.0.g. thais the first job executed
on its machine angb is the last.

Since a machine can only execute one job at a time, there @asjobsy;,y, € Y such thaty;’s immediate
successor iy,, y1 is executed beforg, andx is executed beforg,. Thus, sincey; has completed whex starts,D
cannot include any jobs on whigh depends. Similarly, sincg has not yet completed cannot include any jobs
which depend ory,. Thus,D includes only group-jobs that, according to the precedence constraints, catutxe
concurrently withy; or y,. The total length of such jobs is at most the lengttypplus the length ofy,, which is
< 2k9~1, Since each groupjob has lengttk!, we haveD| < 2k9~1/kl = 2k9 11 as desired. [

Now consider some obstructing grogp By Fact 2, the number afj-jobs executed during a job of lengtfi is
< 2k9-9i-1, Since there ark™ 9 jobs of lengthk¥, the total number ofj-jobs executed during longer obstructing
jobs is

m n
KNG 2kd 91 < 2 Z K91 < 2on. k9L,
i=]+1 i=]+1

Since there ark™ 9% group4g; jobs to begin with, the number of grouzjobs not executed during longer obstructing

jobs is> k"9 —2n.k"9~1 = (1—0(1))k" 9 for k = n? (recallk is arbitrary). The time per job i&% /2 since all

C’-machines have speed 2. Thus, we havetifta) > (1—0(1))k" % -kd /2= 3(1-o0(1))k"= 3(1—0(1))-OPT.
Since this is true for all obstructing groups, we have thatrttakespan of thé’-schedule is at Ieag’j“:lt(gj) >

m- %(1— 0(1)) - OPT. As noted abovan > n/2, which proves the theorem. [|

6.2 Upper Bounds

We begin with an upper bound for the general case of PCS. Ghaidd Shmoys [5] gave a linear programming
relaxation of PCS which formed the basis of th@ilogn)-approximation algorithm, which is the best known. The
full proof appears in Appendix B.

Corollary 3 The PoH of precedence constrained scheduling(ie@h).

Proof: (Sketch) The LP relaxation does not include the constraint that a maaxecutes at most one job at a time.
It is thus easy for one fast machine to simulate the work oéiss\slow machines, so we can apply the Simulation
Lemma to show that the optimal solutions to the LP h@yg) PoH. By the main result of [5], the optimal solution to
PCS is at mosD(logn) times the LP’s solution. [|

We next note several special cases where bounds can beeaibtaimg straightforward techniques. The first the-
orem says that PCS has a property which is necessary, butffiotent, for O(1) PoH: the homogeneous distribution
is within a constant factor of the worst case.

Corollary 4 Let OPT(C',W) be the optimal makespan of an instance W of PCS with capa€lti@hen OPTC',W)
<4.0PT(L,W) forany C, wherel = (1,...,1).

Proof: Produce distributiorD from C' by setting to 0 any elementwith ¢ < % We will show OPT(C' W) <
OPT(D,W) < 4-OPT(L,W). The first inequality is trivial since/ > d;Vi. For the second inequality, schedule the
jobs onD using Graham'’s classic list scheduling algorithm [11] dofes: at time 0, we iteratively place any job
whose precedence constraints have been satisfied ontolamyadhine of positive capacity, until no such jobs remain
or all machines are busy. Whenever any job finishes, we réipategreedy placement procedure. Béte the resulting
schedule.

To bound the length o8, we need only slightly adapt the standard bounds used fanaana algorithm. Note
that there exists a precedence-constrained chain ofjjobs --- — jx such that at any time during either (1) all
machines are busy, or (2) some jpbn the chain is executing. Lét andL,, respectively, be the total length of time

spent in each of these states. To boluadwe use the fact that the amount of time that all machines edouby is
at most the total length of all jobs divided by the total maehspeed, which fob is > 0; soL; < %-zj@ £(j). But
OPT(L,W) > %zj@ £(]) since the total capacity i is n, and thusL; < 2-OPT(L,W). To boundLy, note that
every job in the chaij; — --- — jk is executed at speesl % while OPT(_L,W) must also execute this chain serially
using machines of speed 1. Thug,< 2-OPT(L,W) andOPT(D,W) <Lj;+L, <4-OPT(L,W). [|

Corollary 5 Restricted to instances with a constant number of distiresthine speeds, PCS has PoK1Q

Proof: Follows from the result of [5] that the optimal values of the telaxation are withi®(1) of the true optimum
when there ar©(1) distinct machine speeds. [|

Corollary 6 The PoH of precedence constrained scheduling with ungtjeizs is< 16.

Proof: Consider any capaciti&€, C' = C, and jobsJ, and suppose the best schedule onGheachines executes job

j on machinem(j) during[t(j), t(j) + 1/cuwj)- Itis sufficient to show &' schedule such that each job is executed
within [16-t(j), 16- (t(j) +1/cm(j))]. We first modify the schedule to make it more convenient: cotiveC-machine
speeds down to the nearest power of 2, and execute eaghajobtime which is a multiple of /iy, j). Each of these
modifications at most doubles the length of the schedule CLetndt*(-) be the resulting capacities and execution
times.

Now let f be given by the Simulation Lemma. Consider the machfnési) for somei. First, we merge each pair
of machinesmg,m, € (i) for which Cm, = Cm, DY replacing them with a machine of capacity,2. We revise the
execution time of each jobast*(j) =t*(j) if m(j) = my, andt*(j) =t*(j) + % . 1/c’r‘n(1) if m(j) = mp. Completion
times do not increase since the machine capacity has dowdgobs do not overlap since eachj) was a multiple
of 1/cyyj)- Iterating this merging of the machinesin'(i), we are left withk machinesm, ..., my of unique power-
of-two capacities 2 ..., 2¢ (some may be missing).

We can now schedule these machines’ jobs on a single maghofeapacity 21 without changing the range
of time in which each job is executed, as follows. Break tim@ islots of length 12¢*1, the length necessary to
process one job on machinge For each jolj; on machinary, there are two available slots within its scheduled time
[t*(j1), t*(j1) +1/2X]. Place each job in one of these slots arbitrarily. For eabhjjoon machinemy_1, there still
remain two available slots within the larger tirfig(j2), t*(j2) + 1/2<71], so we can recursively schedule the jobs on
machinesm, ..., me_; in the same manner.

The Simulation Lemma guarantegs> > e -1(j) Cmy = 1.2 We used a machine of spe€ftt®, so this increases
the makespan by a factor of 4. Combining this with our eartiedification of the schedule, the corollary follows

7 Resource Constrained Scheduling

Resource constrained scheduling [8] (RCS) generalizeemaim makespan scheduling by adding some nurkluodr
resourcesspecified by the problem instance, each of which is sharesbaall the processors. Specifically, eachjjob
is associated with not only a length but also a resource reapeintri(j) € [0,1] for each resourcec {1,...,k}. We
require thaty ;g ri(j) < 1 for all timest and each resouréewhereE; denotes the set of jobs executing at timé
resource requirement could represent, for example, anedjfraction of the available bandwidth on a shared network
interface, exclusive write access to a particular lagkj{ = 1), or read access to the loak(j) = 1/|J|, where|J| is
the number of jobs).

We next upper-bound the PoH of RCS by that of PCS. In fact, weea somewhat stronger claim:

Theorem 5 The PoH of scheduling with both resource and precedencereamis is at most the PoH of PCS.

Proof: Suppose the PoH of PCSas= a(n). Consider ang, C' = C, and workload instanc&} which may include
both precedence and resource constraintsSlbetan optimal schedule ¥, on theC-machines. Construct workload
W, from W, by removing all resource constraints, and adding everyiplesgrecedence constraint which maintains
feasibility of S: that is, we add a precedence constrgint> j, for any jobsj;, j» such thatj; completes by the time
j2 begins inS.

To prove the theorem we will show th@PT(C',\W;) < OPT(C'\W,) < a -OPT(C,W,) < a - OPT(C,W,), where
OPT(C,W) denotes the minimum makespan of a schedule with workigazh machine€. The second inequality

10

follows from the fact that the PoH of PCSas The third follows from the fact the, an optimal schedule faig, is
also feasible fow\s.

For the first inequality, it is sufficient that any feasibldiedule oW, is also feasible fo¥\y: that is, the added
precedence constraints are at least as restrictive asrtioveel resource constraints. For any feasible schedWé of
let E; be the set of jobs running at any tirheWe will showy ;g ri(j) <1, so that the resource constraintsfare
satisfied at all times. It is sufficient to show that the j@psre executed concurrently at some time during schedule
S. Supposq; is the job inE; which begins last irg, at timety; and j» is job in E; which finishes first ir§, at timet,.
Clearly,t; <ty or else there would be a precedence constijaint j; in W, which there cannot be since all jobsEn
are run concurrently. So at tinfe +1t2)/2 in S, all jobs inE; have started, and none have finished, so all are running.
[|

8 Scheduling With Release Times

The last scheduling problem we consides@heduling with release times&Ve must produce an offline schedule of
jobsJ on machine€ as in scheduling on related machines, except that we arg&so for each jolj € J arelease
time r(j) before whichj may not be executed. Our cost functigit, (J,r)) is the minimalotal response timef any
schedule of jobs with release times on machine€. We define total response time as the sum over all jodfsthe
time j spends in the system normalized by its len :H?()jéc’r(”, wheret(j) is the start time of jolj andc is the
capacity of the machine on which it is run.

Similar release time constraints appear in Garey and JoHB$dut we borrow the response time objective from
gueuing systems such as [22], in which it is known that destngigparallelism — i.e., increasing heterogeneity — can
significantly increase response time (see discussion itidheR).

Itis easy to observe that even moving from two machines taande quite disadvantageous. As in PCS, reduced
parallelism causes short jobs to be held up by long jobs. Tiherfoof appears in Appendix C.

Theorem 6 The price of heterogeneity of scheduling with release tiwi#sjob sizes if1,k] is Q(k).

Proof: (Sketch)LetC = (1,1) andC’' = (2,0). Supposd consists ofnkjobs of size 1 arriving attimes @, ..., mk—1
andm jobs of sizek arriving at times 0k, 2k, ..., mk— k. These can be scheduled as they arrive orCtmeachines,
for a total response time @(mk). Now consider scheduling these jobs on the si@jeachine of nonzero capacity.
Either®(m) long jobs are delayed for tim®(km) until all short jobs are complete, or each@fm) long jobs delays
O(k) short jobs for timed(k) each. Pickingn = k?, in either case total response timefigk*), compared witf®(k®)
for theC-machines. |

9 Network Construction

In designing a communication network, a typical goal is tmimize the number of hops between any two nodes,
subject to bounds on the maximum number of links incidentaichenode. For example, in placing physical links
between nodes of a supercomputer or cluster, each node mayHhmnited number of network ports. In an overlay
multicast network, each link may involve forwarding a streaf multicast data, so the degree of a node would be
limited by its available bandwidth. Constructing such nateg with low maximum latency between nodes involves a
classic tradeoff [6] between degree and diameter.

In this section we will study how the optimal diameter chagg the degree bounds become more heterogeneous.
Note that in the following formulation, we do not make uselwf tworkload” parameter of the cost function. Also,
in the proof, we do not apply the Simulation Lemma becausedipacities specify hard constraints which cannot be
violated (Condition 3 of Theorem 1 would not be satisfied).

Definition 3 (Minimum Graph Diameter) Given positive integer degreerm®iC= (cy,...,Cn), MinDiam(C) is the
minimum diameter of a graph G in whicledqi) < ¢; for all nodes i.

Theorem 7 The price of heterogeneity of MinDiam<s2.

11

Proof: We will showMinDiam(C') <2-TREKC') < 2-TREEC) < 2-MinDiam(C), whereT REK-) is the minimal
height of a rooted tree with given degree bounds. The firgfuaéty follows from the fact that a tree’s diameter is at
most twice its height, and the third follows from the facttttiee shortest-path tree rooted at any node of a graph has
height at most the graph’s diameter.

For the second inequality, we will exhibit a sequence ofdfge. .., Ty and a corresponding sequence of degree
boundsC = C1,C?,...,CX = C’ such that each treg satisfies degree boun@$ and the height of the trees do not
increase as we proceed through the sequence. Moreover Welbe the optimal tree for degree bour@sallowing
us to conclude thaf REEC’) < TREEC).

In each step, we produc®** from C' by transferring one unit of capacity (a unit bound on the deyjfrom some
nodej to ¢, Wherecif > cij; a standard fact is that such a sequence of transfers alwésts ehenC’ = C [15]. To
produce tred; 1 from treeT;, we first test whether lev@l) < level(j), where level-) denotes distance from the root.
If this is not true, we transfar} — cij child subtrees from nodéto nodej (or as many as exist if has fewer subtrees)
and swap the labeling of the nodes, so that we may assumegwilat level?) < level(j). Finally, we transfer one
child subtree from nod¢ to node/ to match the degree boun@s'! (if j has a subtree). Since these operations all
involve moving subtrees closer to the root, the height cdy decrease. |

10 A Worst Case for Testing

In this section, we discuss how the price of heterogeneitypcavide a worst case for testing, using load balancers for
distributed hash tables (DHTSs) as an example.

Most DHTs have been designed without knowledge of their exadradoptive environment, which might be a
homogeneous cluster, a worldwide managed system like R@ngl] (whose nodes vary in memory, disk space,
and processor speed by a factor of 4 td)14r a peer-to-peer system like Gnutella (whose nodes vabpitleneck
bandwidth by at least three orders of magnitude [19]). Witbhsa wide range of target deployments, it may be
valuable to test under a capacity distribution which wowddiid the system’s performancesinydeployment scenario.

If we have a cost functiog(C,W) which models the system well, andgthas PoHa, then the system’s cost under
homogeneous capacities is within a factoof the worst case regardless of the workldsdas long as we fix some

n and the total capacity. We next argue that in the case of Didd lmlancing, it is possible to produce such a cost
functiong which is a reasonable model of the system.

Several proposed DHT load balancers [9, 13] assign ownedstubjects stored in the system by first partitioning
the objects amongrtual nodesand then placing virtual nodes on physical nodes. Eachalirtode has an associated
load, such as the rate of incoming requests for objectsdtoré. The goal is to assign virtual nodes to physical nodes
in a load-balanced way.

More specifically, suppose we desire to minimize the meamiat experienced by users of the system. Further
assume that the latency experienced by a user connected/sec@hnodei is uj/ci, wherey; is the total number
of users connected tbamong all of its virtual servers. If virtual servgrhas/(j) users, and the set of virtual
serversJ; is assigned to physical nodewe can write the users’ total latency by summing over plajsiodes as
9(C,J) = 3 £(%)?/ci, wherel(J) = ¥ <3 £(j) = ui. The following corollary implies that if the DHT load balagrc
finds assignments of virtual to physical nodes that are wihiactora of optimal, then mean latency will be within a
factor 2o of the mean latency under homogeneous capacities, for dteripaf load on the virtual servers.

Corollary 7 The price of heterogeneity of@,J) is < 2.

Proof: Applying Theorem 1, Properties 1, 2, and 3 wjth= 2 are immediate. Property 4 follows since for any
X7y7ClaC2 > 01

(x+y? _ ¥ ¥

a+c — ¢ C

which can be shown by several lines of algebra. []

1As of February 16, 2005, CoMon [17] reported memory betwedf nd 1.98 GB and disk size between 32.7 and 264.7 GB amangtBhb
nodes. By September 29, 2006, these ranges had increage®,48-3.78 GB of memory, 25.5-363 GB of disk, and CPU speadiging from 0.7
to 3.6 GHz. Data was unavailable for some nodes.

12

11 Conclusion

This paper has taken initial steps toward analyzing thecefié heterogeneity in distributed and parallel systems,
leaving a number of directions for future research. First, lmounds could be tightened; resolving the question of
whether precedence constrained scheduling has constempheterogeneity is of particular interest.

Second, one could analyze other cost functions, such aslgiahg with random (rather than adversarial) work-
loads, schedules obtained by heuristics (rather than ttimalschedules), or the Nash equilibria of network conges-
tion and load balancing games [12, 21]. Note that our reswhsch bound the PoH of optima, can yield bounds for
the latter two items. For example, if a game has price of dryamcand its social optima have price of heterogeneity
B, then the Nash equilibria have price of heterogensitg 3. However, it may be interesting to analyze the PoH
of common heuristics which do not give good approximatidiosa Relatedly, Suri et al [21] have asked whether
the price of anarchy itself decreases when machine speéhsiidoad balancing game become heterogeneous. Our
framework may have relevance in answering that question.

A third direction is to broaden our model. Extending the ontdf heterogeneity to allow nodes to have multiple
kinds of capacity, or in general more than one attribute, brapden its applicability.

Acknowledgments

The authors thank the anonymous reviewers for useful ciiorecand suggestions, and Christos Papadimitriou, Satish
Rao, Scott Shenker, lon Stoica, David Molnar, and Lakshrayenan Subramanian for helpful comments. This paper
is based upon work supported under a National Science Ftandaraduate Research Fellowship.

References

[1] Planetlab. http://www.planet-lab.org/.

[2] V. A. F. Almeida, |. M. M. Vasconcelos, J. N. C. Arabe, and ®. Menascé. Using random task graphs to
investigave the potential benefits of heterogeneity inlpasystems. IfProc. ACM/IEEE conference on Super-
computing 1992.

[3] Virgilio Almeida and Daniel Menascé. Cost-performa@ealysis of heterogeneity in supercomputer architec-
tures. InProc. ACM/IEEE conference on Supercomputit@90.

[4] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, NickHam, and Scott Shenker. Making Gnutella-like P2P
systems scalable. Proceedings of ACM SIGCOMN003.

[5] F. A. Chudak and D. B. Shmoys. Approximation algorithros precedence-constrained scheduling problems
on parallel machines that run at different speedsProc. 8th Ann. ACM-SIAM Symp. on Discrete Algorithms
(SODA) pages 581-590, 1997.

[6] Francesc Comellas and Charles Delorme. The (degreemedéa) problem for graphs. http://www-
mat.upc.es/grup_de_grafs/grafs/taula_delta _d.html.

[7] lan Foster and Adriana lamnitchi. On death, taxes, aedcctinvergence of peer-to-peer and grid computing. In
Proc. IPTP$S2002.

[8] Michael R. Garey and David S. JohnsonComputers and Intractability: a guide to the theory of NP-
Completeness\. H. Freeman and Company, 1979.

[9] Brighten Godfrey, Karthik Lakshminarayanan, Sonesha8a, Richard Karp, and lon Stoica. Load balancing in
dynamic structured P2P systems.Hroc. IEEE INFOCOMHong Kong, 2004.

[10] P. Brighten Godfrey and lon Stoica. Heterogeneity aratllbalance in distributed hash tables.Phoc. IEEE
INFOCOM, 2005.

[11] R. L. Graham. Bounds on multiprocessing timing anogmliinBell Sys. Technical Journgbages 1563—-1581,
1966.

13

[12] E. Koutsoupias. Coordination mechanisms for congasiames. Irsigact NewsDecember 2004.

[13] Jonathan Ledlie and Margo Seltzer. Distributed, sedoad balancing with skew, heterogeneity, and churn. In
Proc. INFOCOM 2005.

[14] Geoff Lowney. Invited talk: Why intel is designing miittore processors. IRroc. SPAA2006.

[15] Albert W. Marshall and Ingram Olkinlnequalities: Theory of Majorization and its Applicationécademic
Press, 1979.

[16] Jaime H. Moreno. Invited talk: Chip-level integratiomhe new frontier for microprocessor architecture. In
Proc. SPAA2006.

[17] KyoungSoo Park and Vivek Pai. Comon: A monitoring isracture for PlanetLab.
http://comon.cs.princeton.edu/.

[18] Sylvia Ratnasamy, Scott Shenker, and lon Stoica. Rguigorithms for DHTs: Some open questionsPhc.
IPTPS 2002.

[19] Stefan Saroiu, P. Krishna Gummadi, and Steven D. GeibAlMeasurement Study of Peer-to-Peer File Sharing
Systems. IrProc. MMCN San Jose, CA, USA, January 2002.

[20] S. Stidham. On the optimality of single-server quegesgstems. IrOperations Resear¢lvolume 18, pages
708-732, 1970.

[21] Subhash Suri, Csaba D. T6th, and Yunhong Zhou. Selfesth balancing and atomic congestion game$rbc.
SPAA 2004.

[22] Adam Wierman, Takayuki Osogami, Mor Harchol-BaltardaAlan Scheller-Wolf. How many servers are best
in a dual-priority FCFS system? Rerformance Evaluatigrio appear.

[23] Xiangying Yang and Gustavo de Veciana. Service capaéipeer to peer networks. Froc. INFOCOM 2004.

A NP-completeness of 8AULATION
Define the problem S1ULATION as follows: givera > 1,C, andC’ = C, is there ara-simulation ofC with C'?
Fact 3 SIMULATION is NP-complete.

Proof: Clearly the problem is in NP. To show NP-hardness we redwse faRTITION [8]. In that problem, we are
given a seBSof n positive integers, and must decide whether there exisB@is for which y cgrr = % > sesS.
Normalize the elements @ so thatys.ss=n. Seta =1,C=SandC = (3,3,0,...,0). If C'>=C, then
(a,C,C) is a valid instance of IULATION, and it is easy to verify tha8 can be partitioned in half iff there exists a
1-simulation.
IfC' #C, thenzik:lc’m < 3K, ¢j for somek, wherec;; denotes théh largest component @. SinceC’ has only
two positive elements, this must happen ko 1, which implies that; > 3. In that case, there can be no perfect

partition of S, so we can map onto any “no” instance ofMBLATION . []

B Proof of Corollary 3

In the mixed-integer program of Chudak and Shmoys [5], meaahare divided into groups of equal speed, and jobs
are assigned to machine groups. For our purposes, we may@sglio.g. that all machines have different speeds, in

14

which case the program becomes the following. Variapje= {0,1} represents the assignment of jpto machinek,
andt(j) represents the completion time of jpbWe seek to minimize the makesp@rsubject to

Xkj = 1 V] ed (1)
k=1
(L
C—kalé(J)xkj <D vk:ce>0 2)
X =0 Vk:ck=0 (3)
%Z(J)ij <t(j) i @
= S
d é(j)ij Y Y] :
kZl o <t(j)—t(i) Vi< (5)
t(j)<D Vj, (6)

which can be interpreted as requiring that (1) each job iscomesmachine, (2) each machine finishes by tbng3)
zero-capacity machines aren’t used, (4) the completioa tifreach job is at least its processing time, (5) precedence
constraints are respected, and (6) all jobs finish by fime

Let LP be the relaxation of this program whetg < [0,1], and letLP(C), LP(C’), OPT(C), andOPT(C’) denote
the optimal values oEP and of precedence constrained scheduling, with some gapacitiesC andC’ = C and
workload (J,¢,<;). For anyC andC’ = C, we will show OPT(C’) < O(logn) - LP(C") < 2-O(logn) - LP(C) <
O(logn) - OPT(C). The first inequality is due to [5]; the last is due to the faeitt P is a relaxation of PCS. We show
the second inequality by verifying the conditions of Theore for the optimal values dfP. Properties 1 through 3
follow directly, with B = 2. For Property 4, letx;) be an optimal solution t@P(C), and suppose; = ¢ + Cy,
¢, =0, andg, = ¢ for k € {3,...n}. We show(x;) is a feasible solution fotP(C’) with the same makespdhand
completion timeg(j), where for allj, x; = X1 + Xz}, Xp; = 0, and fork € {3,...,n}, x{(j = Xj. Constraints (1), (3),
and (6) are obviously satisfied. To verify (4) and (5), not the time to process a job doesn’t increase:

f(j)xﬂjzé.) X1j+X2j+ Xkj < Z(J‘)ij'
C Ci+C & G Ck

Finally, (2) is satisfied since

10 1 n
— N U)Xy = £())(Xej + Xoi
C,“;(J) 1 cl+c21;(1)(1j +X2j)
12 12
< max|[— N Aj))xp, — S 4())Xoj
< Clj; (J)xaj ngl (])%2j
< D.

C Proof of Theorem 5

LetC = (1,1) andC’' = (2,0). Supposel consists oinkjobs of size 1 arriving at times, @, ...,mk— 1 andm jobs

of sizek arriving at times 0k, 2k, ..., mk— k. These can be scheduled as they arrive orCtmeachines, for a total
response time o®(mk). Now consider scheduling these jobs on the si@jtenachine of nonzero capacity. For any
schedule, we have one of two cases:

In Case 1, fewer than/2 of the large jobs are scheduled during tifdgkm. Then> m/2 large jobs wait, on
average, at least timlen/2 before they are executed. After normalizing by job length have that the total response
time of just these jobs is - 4. 1 = ©(m?).

In Case 2, at least/2 of the large jobs are scheduled during tifagml. Ignoring all large jobs except these, we
can produce an optimal such schedule by settfijg = r(j1) for each small jobj1, and inserting each large jab
at its specified time(j»), delaying the small jobs only as much as necessary. Sintelaaye job takes tim&/2 to

15

execute on the machine of capacity 2, we must delay sta@itg small jobs by time®(k) each, so total response
time increases b@(k?). This occurs for each of m/2 large jobs that we insert, for a total slowdowne®(mie).

Finally, sincemis arbitrary, taken = k? so in either case total response tim&i&*), compared witf@(k®) for
theC-machines.

16

