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Abstract

We present and investigate a novel and timely application domain for deep rein-
forcement learning (RL): Internet congestion control. Congestion control is the
core networking task of modulating traffic sources’ data-transmission rates so as to
efficiently utilize network capacity. Congestion control is fundamental to computer
networking research and practice, and has recently been the subject of extensive
attention in light of the advent of Internet services such as live video, augmented
and virtual reality, Internet-of-Things, and more.
We build on the recently introduced Performance-oriented Congestion Control
(PCC) framework to formulate congestion control protocol design as an RL task.
Our RL framework opens up opportunities for network practitioners, and even
Internet application developers, to train congestion control models that fit their
local performance objectives based on small, bootstrapped models, or complex,
custom models, as their resources and requirements merit. We present and discuss
the challenges that must be overcome so as to realize our long-term vision for
Internet congestion control.

1 Introduction

In today’s Internet, multiple network users contend over scarce communication resources. Con-
sequently, the data-transmission rates of different traffic sources must be modulated so as to both
efficiently utilize network resources and to achieve good user experience. This challenge is termed
“congestion control” and is fundamental to computer networking research and practice. Congestion
control is amongst the most extensively studied topics in computer networking and, as Internet
services and applications become ever more demanding (live video, AR/VR, edge computing, IoT,
etc.), and the number of network users steeply rises, is ever increasing in importance. Indeed, recent
years have witnessed a surge of interest in the design and analysis of congestion control algorithms
and protocols (see, e.g., [26, 27, 6, 4, 7]).

Consider multiple connections (also referred to as “flows” hereafter) sharing a single communication
link, as illustrated in Figure 1. Each connection consists of a traffic sender and a traffic receiver. The
sender streams packets to the receiver and constantly experiences feedback from the receiver for sent
packets in the form of packet-acknowledgements (ACKs). The sender can adjust its transmission
rate in response to such feedback. The manner in which the sending rate is adjusted is determined by
the congestion control protocol employed by the two end-points of the connection. The interaction
of different connections gives rise to network dynamics, derived from the connections’ congestion
control protocols, the link’s capacity (bandwidth), and the link’s buffer size and “packet-queueing
policy”, which determines how (and whose) excess traffic should be discarded.
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Figure 1: Multiple traffic flows sharing a link

Even the above simple single-link scenario illustrates the complexity of congestion control. Different
connections select rates in an uncoordinated, decentralized manner. Also, with few exceptions, a
connection’s congestion control decisions are oblivious to the number of other connections competing
over the link, at what times these connections enter and leave the network, what packet-queuing
policy is realized at the link, etc. These challenges are further complicated by the fact that, in practice,
different connections might employ different congestion control protocols, and network environments
and segments greatly vary in terms of sizes, link capacities, network latency, level of competition
between connections, etc. Consequently, even after three decades of research on Internet congestion
control, heated debates linger about the “right” approaches to protocol design [16].

Congestion control protocols typically fall into two main categories: (1) protocols designed (either
handcrafted [27, 2]) or automatically generated, e.g., Remy [26]) for a specific network environment,
or a predetermined range of such environments (say, mobile networks, satellite networks, datacenter
networks, etc.), and (2) “all purpose” protocols designed to perform well across a broad range of
environments, e.g., PCC [6, 7]. While protocols in the first category might achieve high performance
when the network matches their design assumptions, they can suffer from poor performance when
this is not so. In contrast, an all-purpose protocol not tailored to a specific network environment might
naturally be significantly outperformed by a protocol designed specifically for that context [15].

Can we have the best of both worlds? Can a congestion control protocol both robustly provide good
performance and adapt online so as to optimize performance with respect to the prevailing network
conditions? We argue that the answer to this question is “Yes”, and that the key lies in employing
deep reinforcement RL to guide congestion control.

Under RL, a decision maker (agent) continuously adapts her policy, which maps locally-perceptible
states to choices of actions, in response to empirically experienced performance (“rewards”). When
applied to congestion control, this translates to dynamically adapting the rules for mapping feedback
from the network and receiver of traffic (e.g., throughput, packet loss, latency, etc.) to choices of
sending rates.

RL is inherently customizable, in the sense that it adapts the mapping from state to actions so as
to maximize the experienced rewards. Recent developments in RL employ deep neural networks
to learn complex patterns in the experienced state, and identify choices of actions that lead to high
reward (deep RL [17, 18]). In addition, in some contexts, deep RL has also been shown to generalize
well, i.e., to effectively apply knowledge acquired from past experiences to new environments. We
conjecture that (deep) RL can be employed to learn good congestion control strategies, which not only
adapt to optimize performance under the actual network conditions, but also react well to changes in
the network environment and provide high performance across variable networks.

We formulate a novel framework for RL-based congestion control protocol design, which extends
the recently introduced Performance-oriented Congestion Control (PCC) approach [6, 7]. We utilize
this framework to design Custard (CUSTomized And Robust Decision). Custard employs deep
RL [21, 17] to generate a policy for mapping observed performance-related statistics (e.g., packet-
loss rate, averaged latency) to choices of rates. Our preliminary evaluation results suggest training
Custard on relatively few, simple environments is sufficient for generating congestion control policies
that perform well also in very different network domains.

Our RL framework for congestion control creates new opportunities for network operators, and even
application developers, to train congestion control models that fit their performance objectives. These
models can be specialized to specific network conditions through training, and specific objectives
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Figure 2: The role of each RL component in Custard

based on a reward function, providing multiple means of customization. We present and discuss the
challenges that must be overcome so as to realize our vision.

2 RL Approach to CC

We next provide a high-level overview of RL and then explain how congestion control can be
formulated as an RL task. Our RL formulation of congestion control extends the recently introduced
Performance-oriented Congestion Control (PCC) [6, 7].

2.1 Reinforcement Learning

In RL, an agent interacts with an environment. The agent has a set of actions she can choose from,
and her choice of actions can influence the state of the environment.

At each discrete time step t ∈ 0, 1, ..., the agent observes a (locally perceptible) state of the environ-
ment st, and selects an action at. At the following time step t+ 1, the agent observes a reward rt,
representing her loss/gain after time t, as well as the next state st+1. The agent’s goal is to choose
actions that maximize the expected cumulative discounted return Rt = E

[∑
t γ

t · rt
]
, for γ ∈

[
0, 1
)
.

The parameter γ is termed the discount factor.

RL has been successfully applied to solving complex problems such as robotic manipulation [11],
computer games [14], and, more recently, to resource scheduling [12], video delivery [13] and
routing [23].

2.2 Congestion Control as RL

Formulating congestion control as an RL task requires specifying the actions, states, rewards, etc.

Actions are changes to sending rate. Intuitively, in our formulation, the agent is the sender of
traffic and her actions translate to changes in sending rates. To formalize this, we adopt the notion of
monitor intervals (MIs) from [6, 7]. Time is divided into consecutive intervals. In the beginning of
each MI t, the sender can adjust her sending rate xt, which then remains fixed throughout the MI.
After experimenting with several options, we chose to express actions as changes to the current rate
(see Section 3.1 for details).

States are bounded histories of sending rates and resulting statistics. After the sender selects
rate xt at MI t, she observes the results of sending at that rate and computes statistics such as goodput,
packet loss rate, average latency, etc., from received packet-acknowledgements. We denote the vector
of statistics resulting from the sending rate at MI t by vt. We restrict our attention below to statistics
vectors that consist of the following elements: (i) sending rate at the MI, (ii) averaged received
rate, (iii) loss rate, (iv) average latency (v) latency gradient [7], and (vi) corresponding reward (see
discussion below).

The agent’s selection of the next sending rate is a function of a fixed-length history of previously
chosen sending rates and the statistics vectors resulting from sending at these rates. Including a small
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history, instead of just the most recent statistics, might allow our agent to detect trends and changing
conditions and react more appropriately. Thus, the state at time t, st, is defined to be:

st = (vt−(k+d), . . . , vt−d)

for a predetermined constant k > 0 and a small number d representing the delay between choosing
a sending rate and gathering results. We discuss how the length of the history, i.e., k, affects
performance in Section 3.3.

Setting rewards. The reward resulting from sending at a certain rate at a certain time may depend
on the performance requirements of the specific application; some services might prefer a lower-but-
constant bandwidth, while others may desire higher bandwidth and are more tolerant to bandwidth
variation. In general, reward functions should increase with throughput and decrease with latency or
loss rate. We discuss specific reward functions in Section 4.2.

3 Introducing Custard

3.1 Architecture

RL inputs and outputs. As discussed in Section 2.2, our RL agent maps fixed-size histories of
statistics vectors st to changes in sending rate. Statistics for each MI are computed from selective
packet-acknowlegements (SACKs) from the receiver, similar to [6, 7]. The agent’s output is a real
value at that we interpret as the following change to the previous sending rate xt−1:

xt =

{
xt−1 ∗ (1 + αat) at ≥ 0
xt−1 ∗ (1− αat) at < 0

where α is a scaling factor used to dampen oscillations (we use α = 0.01).

Neural network. Our RL agent maps real-valued inputs (statistics vectors) to real values (changes
in sending rate). We use a neural network for this task [14, 17, 20]. Neural networks come in many
shapes and sizes and so choosing the optimal architecture could be a complex process. We show,
however, as a starting point, that even a very simple architecture, namely a small, fully connected
neural network, produces good results. We tested several combinations of the number of hidden
layers, as well as the number of neurons per layer. Our experimentation showed that a neural network
with three hidden layers and 32 neurons per layer worked consistently well throughout our evaluation
process (see Section 4).

3.2 Training

Figure 3: Custard’s framework. Four distinct simulators, each running a link with different
parameters and a copy of our agent.

We train our agent using multiple simulators in parallel to reduce training time. Each simulator
simulates only a single link and sends data to our training server. Once our training server has
received a dataset of 8192 monitor intervals from each simulator, it updates our agent’s policy using
the Trust Region Policy Optimization (TRPO) implementation provided by OpenAI Baselines [5]
and sends the updated policy to the simulators, as shown in Figure 3. We train on just four links that
vary only in capacity and latency. Interestingly, when trained on the combination given, our agent
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learned policies that work for a range of link capacities, latencies and buffer sizes. More complex
training may be appropriate in some cases, but our evaluation (see Section 4) shows that even this
simple training procedure produces a fairly general model.

3.3 Choice of Parameters

More than a dozen parameters and some degree of randomness affect the final model we produce at
the end of training. We next discuss two significant parameter choices: history length (how many past
monitor intervals are used as the agent’s input), and discount factor (the degree to which expected
future rewards affect the current rate decision).

Before we can address the effect of parameters on the resulting model, we need to specify a reward
function. Here, we use a simple linear reward function: reward(t) = throughputt−rttt−108losst
where t is the time of the monitor interval, throughput is measured in megabits per second, rtt is
measured in milliseconds and loss rate is the proportion of packets lost, between 0 and 1. This
function says that a gain of 1Mbps is worth 1ms of increased latency or a 1% increase in packet loss.
We use this reward function here and in parts of the evaluation because it is simple. We examine
others in Section 4.2, and expect reward functions to vary based on application needs.

History length. A history length of k means that the agent makes a decision based on the k latest
monitor intervals worth of data. Intuitively, increasing history length should increase performance
because extra information is given. Figure 4 shows this effect. The agent with 100 monitor intervals
of history has the greatest reward, but only by a small margin, therefore we decided to use the agent
with just 10 monitor intervals of history during our evaluation.

Discount factor. For γ near 0, decisions are made almost exclusively based on the immediate
expected reward. For γ near 1, the overwhelming factor in decision making is the long term expected
award. Figure 5 shows the effect of γ on the training reward. The effect here was surprisingly small.
We attribute this tiny effect to our reward function and the stability of our training links. With just
one sender per link, and links that have perfectly stable capacity, the ideal policy will always change
its rate towards link capacity. In scenarios with varied capacity, when a sender might achieve higher
throughput by keeping a small amount of data in the network buffers, this may not be the case. We
use γ = 0 for most of our evaluation, but re-visit the choice of γ when discussing other reward
functions in Section 4.2.

4 Evaluation

Custard’s framework allows anyone to train a custom congestion control agent based on a network
and reward function of interest. In this section, we use two groups of tests to investigate a small set of
agents that were trained in a simulated setting. First, we test the robustness of a simple model with a
simple objective. We identify the operating range of link capacities and latencies (16-64Mbps and
16-64ms) of our model (as described in Section 3) and examine the model’s behavior in and around
this range. Second, we test Custard’s ability to specialize to different reward functions by training
two customized models (using the same training from Section 3) with reward functions that have

Figure 4: Training reward for agents with different history lengths. The red dashed line in-
dicates the reward given for sending at 0Mbps. Below this line, agents are performing worse
than sending nothing at all. The blue dashed line is the optimal reward, computed by assum-
ing the agent sends at exactly link capacity with no increase in latency or loss. In practice, this
is unattainable. Each line represents the average of three models.
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Figure 5: Training reward for agents with different values of gamma. Dashed lines shown as
in Figure 4. Each line is the average of three models.

been presented in recent congestion control work. We then compare the performance of our Custard
agents with congestion control algorithms that are intended to optimize those reward functions.

The above experiments use Pantheon tunnels [28] over Emulab links [25], with five trials for each
data point. We also test a variety of modern congestion control schemes for reference.

4.1 Robustness

(a) Bandwidth sensitivity (b) Latency sensitivity (c) Buffer size sensitivity

Figure 6: Tests over a single link, showcasing the model’s sensitivity to changes in bandwidth,
latency and buffer size. Plotted here is the throughput of each algorithm tested against changes
in the relevant parameter.

In Figure 6, we show how our model behaves as bandwidth, latency and buffer size vary from several
binary orders of magnitude below to an order of magnitude or more above our agent’s training
conditions. Each test was run for two minutes with a single sender over a single link. For each test, we
compare the results of our model against TCP CUBIC [8], BBR [4], Copa [3], and PCC Vivace [7].

Bandwidth sensitivity. Our model was trained on only 16Mbps and 64Mbps bandwidth links, but
any reasonable congestion control should operate in a wider range. Here, we show that range by
examining the model’s sensitivity to bandwidths outside of its training conditions. To test bandwidth
sensitivity, we configured Emulab links with 32ms latency, a 500KB queue and a 0% random loss
rate, in line with our training values for those parameters. Then, we configured the bandwidth
differently for each test, ranging from 2 to 128Mbps. Our model achieves 80% throughput up to
80Mbps, somewhat above its training range. Even as low as 2Mbps, three orders of magnitude
below the training range, our model achieves near-capacity throughput with low self-inflicted latency,
suggesting that training gives an upper bound on model capability for bandwidth, but no real lower
bound. This implies that we could have trained our model for much higher bandwidths to increase its
operating range.

Latency sensitivity. Again, our model was trained on only 16ms and 64ms latency links, but we
would like to know its latency sensitivity across a wider range. To test latency sensitivity, we configure
links within our training range for all other parameters (32Mbps, 500KB queue and 0% random loss).
Each test is performed with a different base latency, ranging from 2 to 128ms. We find that our model
performs poorly at both low and high latencies, but has an extreme dip in throughput when run on a
link with a base latency between 40 and 80ms. Inspecting the individual flows graphs from these runs
showed that our Pantheon over Emulab environment had 2 to 3ms of noise in the base latency, which
caused our agent to reduce its sending rate. Running the 64ms latency test in our simulator showed
near-capacity throughput. Our model may be resilient to changes in link parameters, but it can suffer
significantly from even minor changes in the environment, as this demonstrates.
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Our model was trained on links with only 500KB buffers. Still, it shows high performance even with
a buffer just 1% of that size. We ran buffer sensitivity tests on 32Mbps links with 32ms latency and
0% random loss. The results of these tests appear in Figure 6c. As expected, CUBIC performs poorly
at a very low buffer size (2KB, just one packet). Our model still manages about 50% of the maximum
throughput with a one packet buffer, and more than 80% for all other buffer sizes tested.

Multiflow competition. In all its training, our agent neither competed nor cooperated with another
sender, so we had little expectation for its multiflow performance. Figure Figure 7 shows Jain’s
Fairness Index computed for a set of competing senders with various numbers of competitors for
several congestion control schemes. With just two senders, our agent is extremely unfair, with one
sender taking a greater and greater share of the bandwidth after the two senders initially diverge by
only a small amount. With more senders though, our agent is actually more fair. We suspect this is
due in large part to randomness in the timing of the senders. With just two senders, the one that loses
bandwidth always gives it to the same opponent. With four senders, the extra bandwidth might be
given away randomly or distributed among competitors, preventing one flow from dominating as
significantly. Improving our agent’s robustness to multiflow competition is an interesting avenue for
future work, a point of discussion in Section 6.

Figure 7: Fairness of various congestion control schemes on a 32Mbps, 32ms latency link with
0% random loss and a 500KB buffer. Each test was run for two minutes.

4.2 Previously Proposed Reward Functions

Recent algorithms have proposed utility functions that their congestion control algorithm is intended
to optimize for. We train our agent to optimize two such functions (the "power" function, a common
objective in congestion control, and a version of which was used in Remy and Copa [26, 3], Rpower,
and a loss-based utility function presented with PCC-Vivace, RV−loss [7]). We compare our RL
approach to the original congestion control algorithms.

Rpower =
throughput

latency
, RV−loss = throughput0.9 − 11.35 ∗ throughput ∗ loss

Comparing our RL approach to the original algorithms on a single static link yields uninteresting
results because such links have essentially no tradeoff between throughput and loss or latency, so we
create a dynamic link whose bandwidth varies uniformly in the range from 16 to 64Mbps, changing
once every five seconds. We use the same random seed to create link variations for all tests.

Figure 8a shows the throughput to latency tradeoff made by a RemyCC-generated algorithm provided
by Pantheon [28], Copa, Vivace-Loss, and Custard, with CUBIC shown as a baseline. RemyCC and
Custard achieve similar throughput, but Custard has an average latency of 47ms, while RemyCC’s
average latency is about 79ms. While Custard clearly has a preferable operating point to RemyCC,
Copa’s operating point may be more desirable. With just 12% lower throughput, Copa operates at
just 36ms average latency. The description of the utility function presented with Copa suggests that it
optimizes queuing delay [3], which is just 4ms for Copa compared to 15ms for Custard.

CUBIC performance is split between high throughput and very low throughput. Examining these
traces shows that the high throughput CUBIC flows have loss rates of about 0.02%, while the low
throughput flows have loss rates of about 0.15%. We suspect this may be an artifact of frequent link
configuration changes, as the CUBIC tests in Figure 6 show much more typical performance.

Figure 8b shows the throughput to loss rate tradeoff made by PCC-Vivace (with loss-based reward) and
Custard. Custard obtains about 2Mbps lower throughput than Vivace-Loss, but suffers near zero loss,
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(a) Custard, Copa and RemyCC are
all optimized for a similar utility func-
tion.

(b) Custard optimizes a loss-based reward function bet-
ter than Vivace-Loss, and manages to have both higher
throughput and lower loss than Vivace-Latency.

Figure 8: Performance on a dynamic link within its training range (16-64Mbps, 32ms latency,
500KB buffer and 0% loss rate).

compared to Vivace-Loss’s 10% loss (in part induced when the link capacity suddenly drops while the
buffer is full). This tradeoff gives Custard an average reward score of 28, while Vivace-Loss’s reward is
-20. PCC-Vivace’s default reward function includes a latency gradient term that prevents it from
inducing high loss, but the result of that reward function depends on exactly the interval over which it
is computed, making it difficult to compare with. Still, we plot the results of Vivace-Latency, which
shows both lower throughput and higher loss than Custard in this test.

Reaction to Early Signals of Congestion The comparison of our loss only reward function makes
one benefit of our RL approach clear: instead of waiting until undesirable congestion occurs (as
Vivace-Loss does with loss), our agents can react to earlier signs of congestion (like increasing
latency), and completely avoid the problem. Figure 8b shows just how significant this improvement
can be. The PCC family of protocols react to decreasing reward. Given the proper inputs, our agent
can predict a decreasing reward and act to avoid the problem. We discuss this further in Section 6.

5 Related Work

There have been several attempts (mostly over a decade ago) to apply RL to congestion control in
specialized domains. These cannot be easily generalized to model the problem of CC outside of the
specific settings considered. An early endeavor focused on ATM networks [22]. [10] employs RL
to create a cooperative congestion control controller for multimedia networks. [19] and [9] focus
on multimedia applications. [1] explores designing a TCP-style congestion control algorithm using
Q-learning [24]. [29] employs RL to solve congestion problems in wireless sensor networks.

Remy [26] generates offline congestion control algorithms for an input model of the network and
traffic conditions. Unlike RL-based approaches, the Remy solution is static; if the actual network
conditions change, performance could potentially degrade substantially. Custard, on the other
hand, can continue to be trained online. Our evaluation, although small scale, shows that Custard
substantially outperformed Remy in latency, suggesting that deep RL is more effective than Remy’s
learning approach in some scenarios.

PCC [6, 7] employs online learning to guide congestion control. While online learning congestion
control provides valuable worst-case guarantees (namely, no regret [7]), unlike Custard, it does not
learn the prevailing network regularities and adapts accordingly. Thus, while PCC does provide
robustness, it does not automatically customize to the experienced network.

6 Conclusion and Future Research

We presented Custard, a congestion control protocol powered by a deep RL mechanism. In this work
we tested both the robustness and specialization of Custard. Our evaluation showed that Custard
was fairly robust with respect to link capacity, latency and buffer size, but we identify room for
improvement in multiflow competition. Our specialization test showed that Custard was capable of
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optimizing previously proposed reward functions, even better than PCC-Vivace and RemyCC, and
comparably to Copa.

Our work has provided a foundation and showed promising results for RL-based congestion control,
but our evaluation is preliminary and leaves open a variety of interesting questions.
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