
A PCC-Vivace Kernel
Module
PRESENTED BY TOMER GILAD

Internet Congestion Control

Data

Acks

The Internet

Senders Receivers

Internet Congestion Control

Data

Acks

Choose when
to send

The Internet

Senders Receivers

Internet Congestion Control

Data

Acks

Choose when
to send

Pretty passive,
send acks

The Internet

Senders Receivers

Internet Congestion Control

Data

Acks

Choose when
to send

Pretty passive,
send acks

Tries to get packets
through but…

The Internet

Senders Receivers

Internet Congestion Control

Data

Acks

Choose when
to send

Pretty passive,
send acks

Tries to get packets
through but…

small buffers
large buffers

random loss
competing flows

WiFi links
LTE links

The Internet

Senders Receivers

Internet Congestion Control

Data

Acks

Choose when
to send

Pretty passive,
send acks

Tries to get packets
through but…

small buffers
large buffers

random loss
competing flows

WiFi links
LTE links

CUBIC:
Backs off on a single loss

The Internet

Senders Receivers

Internet Congestion Control

Data

Acks

Choose when
to send

Pretty passive,
send acks

Tries to get packets
through but…

small buffers
large buffers

random loss
competing flows

WiFi links
LTE links

CUBIC:
Backs off on a single loss

Fills buffers

The Internet

Senders Receivers

Internet Congestion Control

Data

Acks

Choose when
to send

Pretty passive,
send acks

Tries to get packets
through but…

small buffers
large buffers

random loss
competing flows

WiFi links
LTE links

BBR:
Explicit model, better performance

The Internet

Senders Receivers

Internet Congestion Control

Data

Acks

Choose when
to send

Pretty passive,
send acks

Tries to get packets
through but…

small buffers
large buffers

random loss
competing flows

WiFi links
LTE links

BBR:
Explicit model, better performance
Fills to limited extent, drains periodically

High loss rate

The Internet

Senders Receivers

Internet Congestion Control

The Internet

ReceiversSenders
Data

Acks

Choose when
to send

Pretty passive,
send acks

Tries to get packets
through but…

small buffers
large buffers

random loss
competing flows

WiFi links
LTE links

PCC:
1. Monitor performance at various rates
2. Adapt rate in the utility-maximizing direction

Rate 𝑟1 Rate 𝑟2 Rate 𝑟3

PCC Utility Framework
PCC uses monitor intervals

1 RTT

PCC Utility Framework

Observed
Statistics

Throughput

Latency

Latency change

Loss Rate

Utility Function

U(Rate, …)Network

PCC Utility Framework

Observed
Statistics

Throughput

Latency

Latency change

Loss Rate

Utility Function

U(Rate, …)Network

Causal relation

PCC Utility Framework

Observed
Statistics

Throughput

Latency

Latency change

Loss Rate

Utility Function

U(Rate, …)

Causal relation

Unknown Network

PCC Utility Framework

U
ti

lit
y(

r)

Rate

Example Utility Graph

Utility increases with
throughput, no negative effects

Link Capacity

Utility decreases
due to latency or
loss

PCC Flexibility
We give two utility functions, Allegro and Vivace

PCC Flexibility
We give two utility functions, Allegro and Vivace

PCC Flexibility

Positive reward
diminishes with
loss rate.

We give two utility functions, Allegro and Vivace

PCC Flexibility

Positive reward
diminishes with
loss rate.

Penalty factor for loss.

We give two utility functions, Allegro and Vivace

PCC Flexibility
We give two utility functions, Allegro and Vivace

PCC Flexibility

Reward or penalty based
on rate (will give a nice
gradient)

We give two utility functions, Allegro and Vivace

PCC Flexibility

Unit reward
for sending

Reward or penalty based
on rate (will give a nice
gradient)

We give two utility functions, Allegro and Vivace

PCC Flexibility

Unit reward
for sending

Reward or penalty based
on rate (will give a nice
gradient)

Penalty factor for
latency inflation. Can
be extremely high to
react quickly.

We give two utility functions, Allegro and Vivace

PCC Flexibility

Unit reward
for sending

Reward or penalty based
on rate (will give a nice
gradient)

Penalty factor for
latency inflation. Can
be extremely high to
react quickly.

Penalty factor for loss.
Determines maximum
random loss allowed.

We give two utility functions, Allegro and Vivace

PCC Flexibility
Other functions may work with other features:
◦ Functions based on jitter may work as scavengers

◦ Using latency directly on paths with known low-latency may give latency guarantees

◦ Maybe using latency directly to keep queues slightly full

PCC Rate Control

Observed
Statistics

Throughput

Latency

Latency change

Loss Rate

Unknown Network Utility Function

U(Rate1)

U(Rate2)

U
(R

at
e)

Rate

Gradient Ascent

PCC Rate Control

Quickly reach within
50% of link capacity

Determine direction
of increasing utility

Quickly move toward
greater utility

PCC Rate Control

U
ti

lit
y(

r)
Rate

Double rate
each RTT When utility decreases,

return to last rate

PCC Rate Control

U
ti

lit
y(

r)
Rate

PCC Rate Control

U
ti

lit
y(

r)
Rate

Kernel Challenge: Packet-Rate
Associations
User-space: Unique packet IDs, per-packet acks

PCC-Kernel: Approximate packet-rate association

Unique packet IDs
in acks

Acks aggregated, packets do
not have unique IDs

Result: Easy to know the rate at
which packets were sent

Result: Hard to know which
interval a packet was sent in, so
rate may not be known.

Uncertainty
bound, at most
20% of packets

Why not rate_samples?
Introduced with BBR

struct rate_sample {
u64 prior_mstamp; /* starting timestamp for interval */
u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
s32 delivered; /* number of packets delivered over interval */
long interval_us; /* time for tp->delivered to incr "delivered" */
long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
int losses; /* number of packets marked lost upon ACK */
u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
u32 prior_in_flight; /* in flight before this ACK */
bool is_app_limited; /* is sample from packet with bubble in pipe? */
bool is_retrans; /* is sample from retransmission? */
bool is_ack_delayed; /* is this (likely) a delayed ACK? */

};

Why not rate_samples?
The data overlaps

◦ a single packet’s result appears in multiple samples

Cannot configure timing
◦ Short samples would make it easier to group them into intervals

◦ Configurable-length samples could be used directly.

Additional information/configuration could make them more general:
◦ Includes no data about pacing rate (some algorithm’s actions)

◦ Lost and delivered packets may not be from the same timeframe (loss can be learned about later)

Kernel Challenge: Dealing with
Approximations
The PCC kernel implementation makes more approximations:
◦ Packet-interval association

◦ Calculating the change in latency

Result: Unstable gradients

Set minimum rate change to 2%

Performance Results
Preliminary results from Pantheon
◦ Loss Resilience

◦ Buffer Bloat

◦ Loss at Convergence

Compared against:
◦ The userspace versions of Allegro and Vivace

◦ CUBIC

◦ BBR

BBR is resilient up to 10% loss
and continues to perform well at
15% loss

PCC-Kernel is resilient up to 5%
loss

It’s CUBIC, what did you expect?

100Mbps, 30ms rtt, 750KB buffer

High Loss Resilience

Low Buffer Bloat

The PCC variants
have about 1ms of
self-inflicted latency

BBR and CUBIC both fill
buffers up to 1000KB.

100Mbps, 30ms rtt, 0% random loss

Loss at Convergence
BBR converges to
about 15% loss rate.

For 10 or fewer flows, PCC
variants have less than 5% loss
rate, but they grow to about 10%.

TCP maintains very low loss rate
for many flows.

100Mbps, 30ms rtt, 750KB buffer

Conclusion
Promising initial results

We aren’t done yet:
◦ Still in early stages

◦ Improving sampling in the kernel

◦ Exposing utility function parameters to the application

Code is available on Github: https://github.com/PCCproject/PCC-Kernel

For more detailed information on PCC: http://www.pccproject.net

https://github.com/PCCproject/PCC-Kernel
http://pccproject.net/

