A PCC-Vivace Kernel Module for Congestion Control
Nathan Jay*, Tomer Gilad** , Nogah Frankel**

Tong Meng*, Brighten Godfrey*, Michael Schapira**

Jae Won Chung**#*, Vikram Siwach***, Jamal Hadi Salim***
University of Illinois Urbana-Champaign*, Hebrew University of Jerusalem in Israel**, Verizon™**

Abstract

The introduction of a high performance packet scheduler to
the Linux kernel and modular congestion control system from
BBR makes it possible to draw research congestion control al-
gorithms into the Linux kernel. In this paper, we discuss the in-
troduction of the PCC family of congestion control algorithms
into the Linux kernel. We implement both loss- and latency-
based congestion control using the rate-based PCC architec-
ture and discuss possible interfaces for choosing congestion
control parameters.

Keywords
Linux, networking, TCP, low latency, PCC

Introduction

Research on Internet congestion control has produced a va-
riety of transport layer implementations in the past decades
(e.g., [6, 3,4, 2,10, 1, 8], etc.). Many research algorithms
have stayed in the realm of research because of former chal-
lenges in implementing congestion control in modern oper-
ating systems. Thankfully, the recent introduction of rate-
based mechanisms for congestion control [2] and the creation
of congestion control hooks has made it much easier to im-
plement novel congestion control algorithms in the Linux ker-
nel. These new mechanisms allow developers and researchers
alike to deploy research algorithms in the open-source world.

Ideally, congestion control should deliver consistently high
performance, i.e., close-to-capacity throughput with close-to-
minimum latency, even in the presence of many competing
flows. This objective involves a tradeoff: obtaining full link
utilization on a bottleneck link requires an algorithm to keep
packets in the buffer preceding the bottleneck. If the bot-
tleneck link has unpredictably variable capacity as LTE links
may [cite], then the congestion controller must keep sufficient
data in the bottleneck buffer to take advantage of sudden in-
creases in capacity, and it must back off to keep latency low
if the link capacity decreases. This challenging scenario is al-
ready extremely common, with some sources estimating that
the majority of webpage traffic is now served to mobile de-
vices [9].

Congestion control must also serve a variety of applica-
tions whose goals may differ. Loading static webpages,
downloading bulk files and streaming buffered or live videos

Utility Function
Framework
Throughput

[} Loss Rate | (...
r1 .. —:-> Latency ‘J—)'bm-'} Learning
1 Rate —>r3
g !
r2 ..-:-» Throughput .ﬂ—).}uz_b Control

Loss Rate
Latency .

PCC

Figure 1: PCC Architecture

may have different optimal operating points for throughput
and latency. Often, the only way for network operators or
developers to choose different operating points is to choose
a completely different congestion control algorithms. Unfor-
tunately, the objective of each congestion control algorithm
may not be clear, forcing network operators to test a variety
of algorithms and develop in-house implementations to meet
their needs.

Recognizing these challenges for congestion control, and
the great opportunity afforded by the improved Linux net-
working code, we implement PCC-Vivace [4] with both loss-
and latency-based utility functions in the Linux kernel and
discuss further opportunities for high-performance conges-
tion control and configurability.

Background

Our kernel module is an implementation of PCC-Vivace con-
gestion control algorithm, so we provide a brief description
here. Interested readers can check the full paper for more
information [4].

PCC’s core architecture is based on RTT-length monitor
intervals and an explicit utility function. By sending at a vari-
ety of rates, each for a full RTT and monitoring the resulting
network statistics, PCC can compute the utility of each rate
and choose a sending rate that optimizes utility. The rates
tested and resulting rate decision will depend on the current
state of the PCC state machine as described below. For utility
functions, we generally reward throughput while penalizing
loss or latency increases. Our module includes two utility
functions, Allegro and Vivace, named for their source imple-
mentations [3, 4].

The Allegro utility function rewards sending rate but pe-
nalizes the flow for lost data. This essentially optimizes

Uy(r)=r=x*(1 —adpgl% — BL)
UA(T) = l—i-e% —rlL

Figure 2: Allegro and Vivace utility functions where r is the
rate, L is the loss rate. o and (3 are weights on latency inflation
and loss chosen to match the original Vivace implementation

[4].

Double sending rate each Cof‘“““es
RTT to increase

Startup] Utility

Utility
decreases
Y

Probing
|i A 4-RTT test. Tries 2 rates, |«

one above and one below the
current rate for 2 RTTs each.

Inconclusive

Test

Utility
increases

Utility
decreases

Y
Moving
Change rate toward higher
utility.
L #
Utility
increases

Figure 3: PCC State Machine

for throughput without regard to latency, and with an ex-
plicit tradeoff against loss. The Vivace utility function re-
wards throughput, or decreases in latency, while penalizing
lost packets and increases in latency. This means that Vi-
vace will allow queues to drain if it has a link to itself, or
if other flows allow the queues to drain, but in the present
of a buffer-filling flow like CUBIC, it will tradeoff between
throughput and loss rate. Vivace will back off quickly as la-
tency increases.

PCC State Machine

PCC-Vivace’s full implementation has three states, startup,
probing and moving.

In startup, PCC repeatedly doubles its sending rate (once
per RTT) and observes the utility, decreasing its rate by half
and transitioning to the probing state when the observed util-
ity decreases.

The probing state is intended to determine if the best send-
ing rate is above or below the current rate. In the prob-

ing state, PCC chooses one rate slightly above and one rate
slightly below the current sending rate. It then tests each rate
twice (with each test lasting one RTT) and determines which
rate has higher utility. If the two tests have the same result,
PCC enters the moving state in the direction of greater utility,
if the tests are inconclusive, PCC repeats the probing process.

In the moving state, PCC repeatedly changes the sending
rate toward the direction of greater utility. After each RTT,
PCC computes the utility of the latest rate and compute the
gradient of utility with respect to rate. It uses the accelerating
gradient ascent mechanism described in [4]. When the ob-
served utility decreases, PCC transitions back to the probing
state.

Benefits of PCC

PCC offers two key beneifts: in the short term, it provides a
high performance, low latency congestion control algorithm
in the form of PCC-Vivace; in the long term, it provides an ex-
plicit utility-based framework that will allow others to specify
new utility functions that suit their applications.

PCC-Vivace is a recently-published algorithm that has
shown promising results in several congestion control metrics
like loss tolerance, convergence loss rate, and convergence la-
tency. PCC’s architecture contributes to these benefits in three
ways. First, PCC’s monitor interval algorithm takes an empir-
ical approach to determining the best sending rate. This ap-
proach makes few assumptions about the network, so it works
well in many network conditions. Second, PCC leverages a
well-known gradient ascent technique to quickly find the rate
that maximizes utility (with some restrictions on the utility
function). By tracking the gradient of utility with respect to
rate, PCC take larger steps when it is far from the optimal
rate and smaller steps as it nears optimal. Finally, PCC’s
architecture takes advantage of game-theoretic utility func-
tions whose convergence point is a fair share of link band-
width. Subject to measurement errors and noise, this means
that multiple PCC senders independently making rate control
decisions should all gain a fair share of bandwidth.

PCC’s architecture makes it easy for others to implement
utility functions that optimize for application-specific goals.
Our current utility functions show two possible operating
points: low latency, and throughput without regard to latency.
Ongoing research considers even more interesting operating
points for congestion control, including scavenger congestion
control that takes bandwidth only if the path appears to be
underutilized. These are only a handful of possible utility
functions. One could imagine making a video-specific utility
function that has information about bitrate and rebuffering, or
a browser-based utility that considers page loading rate. This
initial implementation of PCC can provide a basis for all of
these future directions.

Kernel Implementation

Previous implementations of PCC were done in user-space
based on the UDT library [5]. These implementations had
several heavy-weight mechanisms available and made as-
sumptions about feedback (per packet acks and timestamps,
unique packet numbers, etc.) that could not be used in a high-

performance kernel implementation. In this section, we dis-
cuss the changes we made to PCC to adapt to the Linux kernel
environment.

ACK Feedback

The user-space implementation of PCC relies on acks and
RTT estimates for every packet to accurately measure
changes in latency, and to easily attribute lost packets to the
sending rate at the time those packets were lost. Unfortu-
nately, tracking this much data is prohibitively costly (and
contributes to the user-space version’s bandwidth limitation
of about 1Gbps). We address this issues in two ways. First,
instead of measuring per-packet RTT, we use the smoothed
RTT estimate provided by the TCP socket. We sample this
RTT at the beginning and end of each sending interval to de-
termine what effect our rate choice had on latency. Second,
because we now have only two samples for latency per RTT
(instead of one per packet), we significantly increase the low-
pass filter for latency inflation from 1% to 3%. Our testing
showed that this may slow the reaction to latency inflation,
but reduces false-positive signals of inflation significantly.

Utility Gradient Calculation

Calculating the gradient of utility with respect to sending rate
tells us which direction to move the sending rate to achieve
greater utility, but it can be very noisy. The equation we use
is:

utilitys — utility,

rates — ratey

For rates that are very similar with a small amount of net-
work noise (say one more packet of 100 is lost in interval
2), the gradient can be extremely steep because the observed
utility is quite different and the rates are close together. The
user-space implementation of PCC attempts to address this by
averaging several gradients, but outliers can still lead to incor-
rect decisions. We reduce the impact of noise by introducing
a 2% minimum rate difference for gradient computations, and
a similar minimum rate change required in the moving state.

Packet-Rate Association

One critical facility of PCC is associating packet results (de-
livered or lost) with the rate at which packets were sent. If
this mechanism is inaccurate, we will make incorrect rate de-
cisions. In the user-space implementations, this is done by as-
signing unique IDs to each packet and recording the interval
those packets belong to. In the kernel, keeping any per-packet
data is impractical. While the kernel does provide data in the
form of rate_samples, this data is overlapping and provides
no additional information compared to the tcp_sock structure
alone. We instead modify PCC monitor intervals in two ways.
First, monitor intervals record the TCP socket’s data_segs_out
when they start and end. Then using the socket’s lost and
delivered values, we can determine approximately when acks
are probably for packets in our interval of interest. This mech-
anism assumes that reordering will mostly occur on a smaller
scale than 1-RTT. Second, we ignore the last few acks (at
most 20% in each monitor interval), and we use this first part

1024 % % e e

—%

1014

Throughput (Mbps)

—*— PCC Kernel
100 BBR

—&— PCC Allegro
—»— PCC Vivace
—e— CUBIC

1074 1073 102 107t
Loss Rate

Figure 4: Throughput on emulated links with 100Mbps ca-
pacity and various random loss rates. The PCC schemes (both
user-space and current kernel) have higher loss resilience than
CUBIC but lower than BBR.

of the monitor interval to calculate utility. This mechanism
is intended to reduce the effect of reordering and compensate
for the fact that we often know about lost packets later than
we know about acked packets.

Evaluation

We install our kernel module into the 4.16 Linux kernel and
test it in emulated network scenarios that demonstrate its core
use cases. We perform the tests using Pantheon [8] (which
uses mahimabhi [7] and iperf) to emulate networks locally. We
compare our kernel implementation to the existing CUBIC
and BBR implementations, as well as the user-space imple-
mentations of PCC-Allegro and PCC-Vivace. We also part-
ner with a major cellular service provider to test our kernel
implementation in a realistic setting.

Random Loss Resilience

We test random loss resilience by running local tests with
Pantheon. We configured out test link to with 100Mbps ca-
pacity, 30ms delay, 750KB buffer, and varied random loss.
We run each test for two minutes and repeat them three times.
As expected, CUBIC backs off to just 2Mbps throughput
under 1% random loss, while all other algorithms manage
about 90% throughput. BBR maintains 75Mbps through-
put at 5% loss and degrades to 50Mbps throughput at 15%
loss. Throughput degrades significantly for the user-space
PCC impelementations around 3 to 5% loss, while the ker-
nel implementation maintains 80Mbps up to 5% loss before
falling off quickly.

We attribute the additional loss resilience of the kernel im-
plementation to the approximate packet-rate association of
our implementation. When we cannot accurately attribute
acks and losses that are counted near the edge of a monitor
interval definitively, we do not count them. Since many losses
are realized later than acks, this means that we disproportion-
ately ignore losses, both decreasing observed loss rate (which

—#*— PCC Kernel
BBR

—&— PCC Allegro

—»— PCC Vivace

—e— CUBIC

1024

1014

Self-inflicted Latency (ms)

10° " > > —>— —>

10t 102 103 104 10°
Buffer Size (KB)

Figure 5: Self-inflicted latency by buffer size.

improves resilience), and potentially impacting convergence.
In practice, we find that our implementation still converges to
a reasonable loss rate of about 5% for 10 flows, discussed in
more detail later.

Low Buffer Bloat

We test buffer bloat by running local Pantheon tests with var-
ied buffer sizes and measuring the resulting self-inflicted la-
tency. Our test uses an emulated link with 100Mbps and a
base 30ms rtt. We ran three tests of each buffer size, which
varied from 2KB to IMB. CUBIC and BBR both completely
filled the buffer, resulting in up to 200% increases in round
trip time. The PCC variants, including our kernel implemen-
tation, increase latency only slightly (about 1ms), regardless
of buffer size.

Loss Rate at Convergence

While TCP maintains a very low loss rate at convergence,
BBR often has a much higher loss rate, around 10%. We
demonstrate low loss rate at convergence for our module by
emulating a 100Mbps, 30ms rtt bottleneck link with a 750KB
buffer, no random loss and a varied number of senders. Each
test lasts for two minutes and is repeated three times. We re-
port the average loss rate for the entire duration of the test
even though the latency sensitive algorithms (PCC-Kernel
and PCC-Vivace) may only induce loss during the first few
seconds of startup for low numbers of senders.

For just two flows, BBR’s loss rate is at 10%, while all
other algorithms induce less than 0.5% loss. As the number
of flows grows, the algorithms have increasing convergence
loss rate, with TCP increasing most slowly. Even with 10
senders though, PCC-Kernel induces a convergence loss rate
of just 5%.

Discussion

Fairly recent updates to the Linux kernel have made it sub-
stantially easier to implement novel congestion controllers,
but our implementation of PCC was somewhat limited com-
pared to what we imagine may be possible and useful. We

0.16

0.14

0.12

0.10 PCC Kernel
BBR

PCC Allegro
PCC Vivace

CuBIC

0.08 -

Loss Rate

tidid

0.06 -

0.04 4

0.02 4

. —e
0004 W o -

T T T T T T T T
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of Competing Flows

Figure 6: Loss rate by number of competing senders on a
100Mbps bottleneck link.

present two areas of interest for which interfaces from user-
space to the kernel may be beneficial: congestion control pa-
rameters and (PCC specific) user-specified utility functions.

Congestion Control Parameters It seems unavoidable that
congestion control algorithms work best in the environments
at the center of their design range. TCP requires a buffer long
enough to avoid losses while filling, but short enough to avoid
extreme delays, and it assumes that losses are always a sig-
nal of congestion. BBR makes assumptions about reasonable
intervals for probing link capacity (mobile networks can be
highly variable though), and it gets high throughput by filling
buffers to a degree that may be unreasonable for low-latency
applications. While PCC was designed without assumptions
about network traffic or conditions, it has many parameters
determined empirically based on a variety of tests: the dy-
namic rate bound starts at 10%, the latency inflation filter is
3%, the gradient step size starts at 400Kbps. These parame-
ters may be more easily updated than the assumptions of CU-
BIC, but they will not be ideal for everyone. Our choice of
parameters seems sensible for current networks and technol-
ogy, but network operators with different traffic may find bet-
ter parameters for their networks. Instead of forcing network
operators to consider other congestion controllers or provide
kernel modules of their own, an interface for specifying con-
gestion control parameters may broaden the use case for each
congestion controller, resulting in fewer, more configurable
control algorithms.

User-Specified Utility Functions In our implementation,
we provide two congestion controllers in one module by
registering two different congestion_ops structs. The con-
trollers differ only in utility function with one reacting only
to loss, and the other reacting to both loss and latency infla-
tion. While these utility functions have a number of sensi-
ble properties, they are far from the only functions one might
imagine. Perhaps a distributed AR-VR application requires
stable latency of less than 120ms and would prefer to stop
briefly than make its users sick. This application might use

its own transport protocol, place checks for the required la-
tency, probe network conditions and operate only in the de-
sired latency range. Developing, testing and maintaining this
protocol would represent a significant effort. On the other
hand, the simple utility function shown below can accomplish
a similar goal in the PCC module we present with just a few
lines of code.

A small amount of parameter passing can be done with
Netlink sockets, and switching between a small number of
algorithms can be done by simply registering more conges-
tion_ops, but PCC brings the potential for even greater con-
figurability. As more and more applications become network-
dependent, a richer interface may allow faster innovation in
Linux networking.

Conclusion

Improvements to the Linux networking stack have allowed us
to implement the recently-published PCC-Vivace rate control
algorithm. This initial Linux kernel implementation deliv-
ers a number of the benefits of the user-space research ver-
sion while adapting to the high-performance, low-overhead
environment of the Linux kernel. We have shown promis-
ing performance results in several cases of interest and hope
to continue improving performance and robustness. Addi-
tionally, PCC’s explicit utility functions makes it more adapt-
able than many algorithms, hopefully serving the Linux ker-
nel well as increasingly diverse applications and devices rely
on networking.

References

[1] Arun, V. 2018. Copa: Practical delay-based congestion
control for the internet.

[2] Cardwell, N.; Cheng, Y.; Gunn, C. S.; Yeganeh, S. H.;
and Jacobson, V. 2016. BBR: Congestion-based conges-
tion control. ACM Queue 14(5):50.

[3] Dong, M.; Li, Q.; Zarchy, D.; Godfrey, P. B.; and
Schapira, M. 2015. PCC: Re-architecting Congestion
Control for Consistent High Performance. In NSDI.

[4] Dong, M.; Meng, T.; Zarchy, D.; Arslan, E.; Gilad, Y,;

Godfrey, P. B.; and Schapira, M. 2018. Vivace: Online-
Learning Congestion Control. In NSDI.

[5] Gu, Y. 2005. UDT: a high performance data transport
protocol. University of Illinois at Chicago.

[6] Ha, S.; Rhee, I.; and Xu, L. 2008. Cubic: a new tcp-
friendly high-speed tcp variant. ACM SIGOPS Operating
Systems Review 42(5):64-74.

[7] Netravali, R.; Sivaraman, A.; Da, S.; Goyal, A.; Win-
stein, K.; Mickens, J.; and Balakrishnan, H. 2015.
Mahimahi: Accurate record-and-replay for http.

[8] Pantheon. http://pantheon.stanford.edu/.

[9] Statista. 2018. Percentage of all global web
pages served to mobile phones from 2009 to 2018.
https://www.statista.com/statistics/241462/global-mobile-
phone-website-traffic-share/.

[10] Winstein, K., and Balakrishnan, H. 2013. Tcp ex

machina: Computer-generated congestion control.
ACM SIGCOMM.

In

