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ABSTRACT
Interactive applications like web browsing are sensitive to
latency. Unfortunately, TCP consumes significant time in
its start-up phase and loss recovery. Existing sender-side
optimizations use more aggressive start-up strategies to re-
duce latency, but at the same time they harm safety in the
sense that they can damage co-existing flows’ performance
and potentially the network’s overall ability to deliver data.
In this paper, we experimentally compare existing solutions’
latency performance and more importantly, the trade-off be-
tween latency and safety at both the flow level and the appli-
cation level. We argue that existing solutions are still op-
erating away from the sweet spot on this trade-off plane.
Based on the diagnosis of existing solutions, we introduce
Halfback, a new short-flow transmission mechanism that op-
erates on a better latency-safety trade-off point: Halfback
achieves lower latency than the lowest latency previous solu-
tion and at the same time significantly better safety. As Half-
back is TCP-friendly and requires only sender-side changes,
it is feasible to deploy.

CCS Concepts
•Networks → Network protocol design; Transport pro-
tocols; Network experimentation; Network protocol de-
sign; Transport protocols;
Keywords
TCP; short flows; flow completion time.

1. INTRODUCTION
Short flows drive many important interactive networked

applications, with web browsing the most prominent exam-
ple. In the current Internet, around 99% of flows carry traffic
less than 100 KB [30]. For this kind of flow, user-perceived
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latency is the key challenge as even relatively small delays
can cause the loss of customer attention and revenue.1

The Internet’s current transmission protocol, TCP, tries to
use bandwidth conservatively, but sacrifices the latency of
short flows. As TCP’s slow-start needs multiple RTTs to
detect its fair sending rate, many short flows do not leave this
startup phase before finishing transmission. The situation
becomes even worse because TCP also needs at least one
RTT to detect and recover from packet loss. When there are
not enough packets to generate duplicate ACKs or when the
retransmitted packets are lost, the sender times out, waiting
typically one or more RTTs. As a result, the completion time
of a 32 KB flow from major web sites to well-connected
(PlanetLab) clients on the Internet is around 8.7 RTT [33]
which is far away from ideal. Finally, the above problems
are magnified by bufferbloat in which large router buffers
lengthen RTT.

Many mechanisms have been proposed to optimize short
flow transmission time. Some require protocol changes and
in-network router support, such as RCP [12], RC3 [26] and
QuickStart [32], and therefore have not seen any significant
deployment. Others, such as Proactive TCP [18], increas-
ing the initial congestion window to 10 [6, 15] and Jump-
Start [25] focus on sender-only changes. It is challenging
to design a sender-only mechanism for reducing latency be-
cause a sender has very limited information about the net-
work at the beginning of a flow, and has to effectively guess
the best way (i.e. starting rate and retransmission policy) to
transmit data quickly. All the aforementioned sender-side
optimizations choose to send more aggressively at the ini-
tial start-up phase to reduce flow completion time (FCT).
However, sending aggressively will inevitably impact per-
formance of other flows and indeed, all flows—even the ag-
gressive ones—may suffer if short flows dominate the uti-
lization of the network. We refer to these as safety concerns.
The key problem is to walk the delicate latency-safety trade-
off space and find the sweet spot.

In this paper, we evaluate existing solutions in terms

1A 400 ms additional delay in Google web search caused a
0.74% drop in search frequency after 4 to 6 weeks [11]. The
revenue per person in Bing was reduced by 1.2% with a 500
ms delay or 4.3% with a two second delay [34].



of their latency performance and more importantly their
latency-safety trade-off. We evaluate both flow-level and
application-level benchmarks. At the flow level, we bench-
mark the latency with flow completion time (FCT) and
benchmark safety with two metrics: feasible network uti-
lization, which is defined as the maximum network utiliza-
tion achievable before the throughput collapses, and TCP
friendliness. At the application level, we benchmark latency
with web request response time and benchmark safety with
feasible network utilization with flow arrival process ad-
hering to the real application requests’ patterns.

We evaluated normal TCP and five existing solutions
head-to-head: Proactive TCP, Reactive TCP [18], increas-
ing initial congestion window to 10 [6, 15] (referred to as
TCP-10 in this paper), PCP [7] and JumpStart [25]. Jump-
Start and TCP-10 are closer to the trade-off frontier than the
other two, but are still not good enough. TCP-10 is still
too conservative in many cases and renders both long FCT
and slow web response time even when the network load
is low. JumpStart achieves better flow-level latency perfor-
mance by pacing out all the data at first RTT. However, after
the first batch of data gets paced out, it falls back to nor-
mal TCP with bursty and reactive-only transmission. As
we show in § 4, the bursty retransmission makes JumpStart
too aggressive and thus renders unsatisfying safety bench-
marks: it has low flow-level feasible network utilization,
which makes its application-level web response time unac-
ceptable even under median network load, and impacts TCP
friendliness. Moreover, JumpStart also has suboptimal la-
tency performance by only relying on reactive packet loss
detection.

Based on the evaluation of existing solutions, we pro-
pose a new short-flow transmission optimization mecha-
nism, Halfback, that improves both latency and safety at
both the flow level and the application level. Halfback bor-
rows the initial starting phase from JumpStart: pacing out
packets within one RTT for short flow. However, Halfback
rises where JumpStart fails with a novel Reverse-Ordered
Proactive Retransmission (ROPR) mechanism to improve
reactiveness to packet loss and improve safety by limiting
aggressiveness at retransmission. ROPR proactively retrans-
mits packets in reverse order (starting at the end of the short
flow) at the rate of receiving ACKs.

We evaluated Halfback with both flow-level and
application-level benchmarks. We give highlights of a sub-
set of results here. For flow completion time, we evalu-
ated Halfback against the aforementioned existing mecha-
nisms on PlanetLab across the global Internet with 2,600
node pairs. We found that Halfback reduces latency by 13%
(21% in the 25% of cases where there is packet loss) com-
pared to JumpStart and is 29%, 61%, 51% and 52% bet-
ter than TCP-10, Proactive TCP, Reactive TCP and vanilla
TCP. Further, we evaluate Halfback’s FCT-vs.-safety trade-
off compared with existing approaches. The results show
that compared with JumpStart (the FCT winner among past
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Figure 1: Tradeoff between common case latency (y axis) and
feasible capacity in a pessimistic case of high workload from
short flows (x axis).

proposals), Halfback achieves 19.25% lower FCT, signifi-
cantly improves the feasible network utilization by 1.4×,
and also improves TCP friendliness for both long and short
TCP flows. Finally, we compared the web response time
by using Halfback and other proposals with realistic web-
site data and request patterns. Because Halfback operates
on a better flow-level trade-off point, as shown in Fig. 1,
it achieves significantly better application-level latency-vs.-
safety tradeoff with 592ms (22%) page load time reduction
at 30% network utilization and significantly improves feasi-
ble network utilization by 1.57× comparing to JumpStart.

Summary of key contributions. (1) We implement sev-
eral existing latency mechanisms that had not been previ-
ously compared head-to-head, including JumpStart, Reac-
tive TCP, PCP, Reactive TCP and Proactive TCP, and exper-
imentally evaluate their latency performance at large scale
(2.6K pairs of hosts across five continents) in an Internet en-
vironment and investigated their flow-level and application-
level latency-safety trade-off using Emulab. (2) We design
a novel short-flow transmission optimization mechanism,
Halfback, including the ROPR mechanism that achieves fast
packet loss recovery and limits retransmission aggressive-
ness. (3) We implement Halfback and evaluate its perfor-
mance in the same environment as the other mechanisms and
find that Halfback achieves better latency-safety trade-off at
both the flow level and the application level and better TCP
friendliness.

2. BACKGROUND
2.1 Design Goals and Rationale

Rate control for short flows should be deployable, low la-
tency, and safe. We discuss each goal and its corresponding
implication on design rationale of latency optimization for
short flows.

(1) Deployability: Mechanisms that require changes in
routers and the TCP protocol have proven hard to deploy.
Software changes within senders and receivers require less
coordination among parties. We focus in particular on
sender-side changes only, since significant senders (major
service providers like Google or Amazon) have centralized
control over their deployments, and have an incentive to
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Figure 2: CDF of fraction of traffic carried by different size of
flows using measurements from [30] [9] [21]

change because even hundreds of milliseconds affect user
behavior and revenue. For example, [2] observed major con-
tent providers enlarging their initial congestion window, and
we observed an 8-segment ICW in use at google.com.

(2) Low Latency: The first requirement to achieve low la-
tency is aggressive startup. Even with some historical hints,
a sender will not be able to perfectly predict the appropriate
rate for a new flow since it lacks real-time visibility into the
end-to-end path. Nor will it have time to gradually learn the
rate, as in TCP. Therefore, low-latency flows have to be ag-
gressive in the sense of starting with a sending rate that will
occasionally turn out to be higher than the steady-state.

Second, we need fast recovery from packet loss. Even
one RTT spent detecting packet loss is undesirable. TCP
uses fast retransmission and SACK to respond to loss. How-
ever, senders still need to wait at least one RTT after a loss,
or even more if packets are lost at the end of the flow. Some
algorithms [18] use erasure coding but this requires a new
protocol and increases the difficulty of deployment. Thus,
to respond to loss more quickly than one RTT, we need to
implement some form of proactive retransmission which re-
transmits packets even before receiving a signal of loss.

Finally, a scheme which achieves low latency should be
minimally affected by bufferbloat. Bufferbloat caused by
large buffers in routers increases RTT by increasing queuing
delay. One can mitigate the effect of bufferbloat by finishing
transmission in fewer RTTs.

(3) Safety: An aggressive mechanism can easily cause a se-
ries of problems. First, as TCP is a conservative protocol, the
aggressive mechanism can damage the competing (short and
long) TCP flows. Second, as the aggressive startup phase
has a high initial sending rate, this can even cause problems
for other aggressive flows. Finally, proactive retransmission
needs extra bandwidth which can increase network utiliza-
tion and cause the onset of performance collapse at lower
utilization than TCP. In summary, a safe aggressive mecha-
nism should avoid congestion collapse in the range of real-
istic network utilization, be TCP friendly and incur limited
bandwidth overhead.

There is hope, however, that with a well-designed mech-
anism, more aggressive start-up can be safe and avoid

Internet-wide catastrophic effects. TCP is very conserva-
tive for short flows when it faces this tradeoff. At the same
time, the average network utilization is typically around 20%
to 30% in the Internet (based on 2003 measurements of
backbone links [19]). Fig. 2 shows a CDF of the fraction
of traffic carried by a range of flow sizes in several net-
works. In the measurements labeled “Internet” from a Tier-
1 ISP, only 34.7% of bytes were carried by flows smaller
than 141KB [30] even though more than 95% [6] of web
transfers are smaller than this size. Furthermore, as noted
in a recent forecast report [1], by 2019, video streaming
traffic will comprise more than 80% of global Internet traf-
fic. Therefore, start-up phase optimization mechanisms with
carefully tuned aggressiveness for the small portion of very
short flows probably will not severely overload the Internet
as a whole. This kind of optimization is also likely to be
applicable to data center networks. In measurements at a
private [9] and a public [21] data center, less than 1% of
transmitted bytes were in flows smaller than 141KB. There-
fore even Proactive TCP [18], which doubles the workload
created by short flows, only increases network utilization by
0.2% to 10.4% (i.e., 20% · 1% to 30% · 34.7%) in these en-
vironments when applied to flows smaller than 141KB.

2.2 Overview of Existing Solutions
Several works have developed approaches deployable at

end-hosts which aim to reduce latency for short flows.
PCP [7] uses packet-trains to measure available bandwidth
and sets its sending rate at measured rate. However, the
probes take time and can yield inaccurate (often too con-
servative) results on very small samples, resulting in unac-
ceptably long FCT. Our experiments with PCP showed that
it can have higher flow completion time than TCP.

Reactive TCP [18] uses a probe timeout (PTO) to retrans-
mit the last packet as a probe, thus avoiding the longer re-
transmission timeout (RTO). However, this does not solve
the problem that the starting phase is too conservative in TCP
and can only mitigate the effect of packet loss in the case of
tail loss. TCP-10 simply increases initial congestion win-
dow to 10. It does achieve better latency performance, but
as we will see in § 4, it is still to conservative for just trans-
mitting short flows. Proactive TCP transmits two copies of
every packet in a short flow and unsurprisingly incurs severe
safety problems as its latency performance collapses even
with relatively low network utilization.

Our experiments showed that the existing proposal which
achieves lowest flow completion time, at least in low-
utilization scenarios, is JumpStart [25]. JumpStart acceler-
ates short flows by transmitting the entire flow in one RTT.
This is done with packet pacing, so that packet transmis-
sions are evenly spaced across this single RTT. However, af-
ter the first batch of data is paced out, JumpStart falls back
to normal TCP with bursty and reactive-only retransmission.
JumpStart is effective if all packets get successfully pushed
through the network. However, very commonly, some pack-
ets in the first batch are dropped. When that happens, Jump-



Start has two problems. First, it relies on TCP’s reactive
packet loss detection and has to wait at least one RTT to re-
cover. Second, and more significantly, JumpStart uses TCP’s
retransmission mechanism and will aggressively burst out all
lost packets and will often incur even more loss. This bursty
retransmission mechanism gives it significantly worse flow-
level safety compared to TCP-family solutions. Our experi-
ments show JumpStart [25] has performance collapse when
short flows drive the network utilization to around 50%. This
unsatisfying flow-level safety property actually translates to
even worse application-level latency performance because
web page requests usually involve multiple concurrent short
flows, magnifying the packet loss problem by creating a
brief transient high utilization scenario. Indeed, when using
real webpage request patterns, JumpStart’s application-level
performance begins to collapse (i.e., it becomes worse than
TCP’s) at network utilization of 30%.

As mentioned in 2.1, inevitably, aggressive startup phases
will sometimes choose too high of a rate. The above dis-
cussion of JumpStart illustrates that it’s easy to send data
quickly but the trickiest part of the problem is how to
best handle the inevitable over-shoots. Furthermore, the
application-level results illustrate that an individual sender
should want to do this not only to help other sender’s flows,
but also to reduce interference among its own flows.

3. HALFBACK DESIGN
Measurement and analysis suggest that we should design

a protocol with an aggressive initial packet sending phase
and intelligent proactive packet retransmission phase that
reduces latency and also limits aggressiveness to improve
safety. We propose Halfback to realize this design rationale
with two mechanisms: Pacing and Reverse-Ordered Proac-
tive Retransmission. The Pacing phase follows past work in
that it delivers data quickly, but may incur higher loss rate;
the ROPR phase recovers from that potential loss effectively
with limited aggressiveness in retransmission.

3.1 Pacing Phase
After the three-way handshake, the sender has acquired

the flow control window size advertised by the receiver, and
a sample RTT. Halfback’s first data transmission phase then
begins. The fastest way to transmit the data is simply in one
immediate burst at line rate. However, this arbitrarily large
sending rate may harm the existing flows and increase packet
loss. Instead, we borrow a technique from JumpStart [25]:
we pace out all the data in one RTT. Compared to sending in
an immediate burst, this method adds at most one RTT (for
a total of two) but bounds the transmission rate so there is
significantly lower chance of a burst of packet losses, which
is good for all flows on the network.

In addition, we also give an upper bound of the data trans-
mitted which can be used to bound the transmission rate.
This upper bound equals the minimum of the flow control
window size, flow size, and a Pacing Threshold. If the flow
size exceeds this bound, Halfback falls back to TCP (§3.3).

The application designers could simply set Halfback’s Pac-
ing Threshold to a constant value that would be sufficient to
transmit most small web objects. In our experiments, we use
a threshold of 141KB which can cover more than 95% [6]
of web transfers. Another option, not evaluated here, is to
set the threshold to the largest throughput observed on re-
cent connections, times the RTT derived from the three-way
handshake. This setting efficiently avoids a too-aggressive
startup phase.

3.2 Reverse-ordered Proactive Retrans-
mission (ROPR) Phase

After completing the Pacing Phase, Halfback proactively
begins protecting itself from packets that may have been lost.
The basic idea is that in addition to normal packet retrans-
mission, Halfback proactively retransmits the flow’s pack-
ets, but does so in reverse order and at the same rate that it
receives ACKs from the previous phase. This proactive re-
transmission helps Halfback quickly recover from loss while
limiting impact on other flows. To better understand this
scheme, we explain the design rationale for each aspect of
this ROPR phase: starting time, retransmission rate, and the
order in which to retransmit packets.

We choose to start this phase when the sender receives the
first ACK after the Pacing phase. Due to inaccurate estima-
tion of RTT, ACKs can be received before the pacing phase
finishes. In that case, ACKs will not trigger proactive re-
transmission until all new packets are paced out. This avoids
competition between the paced and retransmitted packets. It
also allows the sender to do some useful work — whereas
in standard TCP, having transmitted all the data, the sender
would simply be idle waiting for ACKs.

For the retransmission rate, we use the rate at which the
sender receives ACKs. In contrast to TCP and JumpStart,
which can send a burst of (reactive) retransmitted packets,
this (proactive) ACK-based retransmission better approxi-
mates the current available bandwidth of the bottleneck link.
That is, roughly speaking, for each one of the paced pack-
ets that leaves the bottleneck queue, we send one proactively
retransmitted packet. As a result, we avoid affecting other
flows, and significantly reduce the probability that the re-
transmitted packets are lost again which helps the sender
avoid timeout and reduces bandwidth overhead.

The design decisions above specify when and how we
can proactively retransmit a packet; but which packet do
we send each time we have the chance? The goal here is
to quickly recover from any packet loss caused by the ag-
gressive startup phase. As we are retransmitting proactively,
we don’t know which packets are lost; so Halfback tries
to proactively retransmit packets in decreasing order of the
probability they were lost. When the Pacing phase sends
a large amount of data in a short period, the packets at the
end of the flow have a higher probability of overflowing a
bottleneck queue and being lost than the packets at the be-
ginning. Thus, in ROPR, the sender proactively retransmits
packets in reverse order. When combined with the fact that



Receiver 

Sender 
1       2       3        4                 6       7       8        9                           9       8        7                                                               

1         2        3       4      5        6        7      8                8       8       10      10     10     10 
Pacing Phase ROPR Phase 

1 RTT 2 RTT Transmission finish 
5 10 10 6 9 

Figure 3: Halfback transmits a 10-packet flow

ROPR matches the rate of ACKs from the Pacing Phase, this
means that in the typical case, the ACKs (moving forward)
will meet the retransmissions (moving backward) in the mid-
dle of the flow. Thus, ROPR typically retransmits only 50%
of the short flow—hence the name Halfback—which means
that it will only increase network utilization by 0.1% to 5.2%
in the typical network environments mentioned in § 2.1.

RC3 [26] uses a seemingly similar mechanism that trans-
mits packets in reverse order in its Recursive Low Priority
(RLP) control loop. However, we want to highlight that
RC3’s reverse-ordered transmission is totally different from
Halfback in terms of when, how and why. RLP transmits
reversed-ordered packets at line rate, and it does so concur-
rently with TCP’s normal forward-ordered packet transmis-
sion. More importantly, RC3 requires in-network changes
to transmit the reverse ordered packets to a lower priority
queue in the network. RC3 uses reverse ordering to avoid
transmitting the same packet for both primary control loop
and RLP control loop, whereas Halfback use it for proactive
recovery from packet loss.

3.3 Falling back to TCP
Aggressive transmission is not useful for long flows,

where overhead would have greater impact and flow com-
pletion time is less critical. Without information about ex-
act flow sizes, Halfback needs a mechanism to fall back to
normal TCP for long flows. A practical solution is to trans-
mit aggressively for the first k bytes, effectively the Pacing
Threshold discussed in §3.1, and then fall back to TCP. Half-
back will successfully deliver the first k bytes of the flow us-
ing its Pacing and ROPR phases, and then will fall back to
TCP with a congestion window of s · RTT , where s is es-
timated from arriving ACKs during the ROPR phase. Other
bandwidth estimation mechanisms can also be used [22,35].

3.4 Example
In this section, we walk through an example 10-segment

flow transmitted by Halfback. Fig. 3 shows the whole pro-
cess. In the first RTT, Halfback’s Pacing phase, the sender
paces out all the ten segments in one RTT. When it receives
the first ACK, the sender enters Halfback’s ROPR phase to
proactively recover from potential packet loss. In this phase,
for each ACK received, the sender will proactively retrans-
mit one unACKed packet in reverse order: it receives ACK 1,
and retransmits packet 10; it receives ACK 2 and retransmits
packet 9; and so on, until it receives ACK 5 and retransmits
packet 6. Next, the sender receives ACK 6. At this point, all
the unACKed packets have already been proactively retrans-

mitted, and the sender leaves ROPR phase.
As shown in Fig 3, the first transmission of packet 9 was

dropped because the aggressive startup phase overflowed the
router buffer. But Halfback proactively retransmitted the
packet during the ROPR phase and thus recovered from the
loss before being notified of it. In contrast, a normal TCP
sender needs to wait until timeout since there are not enough
duplicate ACKs (three are needed) to generate a lost-packet
signal. Even if we retransmit the last packet multiple times
to generate enough duplicate ACKs to avoid timeout, as in
Reactive TCP, the receiver will receive packet 9 0.9 · RTT
later than Halfback and thus add 0.9 ·RTT to the FCT.

ROPR masks the latency penalty from packet loss but it
also carries the cost of additional packet retransmission with
additional bandwidth consumption. However, as we demon-
strate in Fig. 1, TCP is too conservative for short flows and in
§4.3 we show that this additional bandwidth will not cause
problems for the whole network and co-existing flows.

4. EXPERIMENTS
In this section, we conduct a perfomance evaluation of

eight schemes to optimize short flow latency: TCP, TCP-10
(set ICW to 10) [6,15], TCP-Cache (caching older values of
the cwnd and ssthresh), JumpStart [25], PCP [7], Reactive
TCP [18], Proactive TCP [18], and finally Halfback. Our
goal is to determine where these schemes lie in the tradeoff
space between latency and safety.

The experiments consist both flow-level benchmarks and
application-level benchmarks as listed below. For flow-
level benchmarks, we first compare different protocols’ la-
tency performance with flow completion time (FCT) under
different network scenarios. And we evaluate the latency-
safety trade-off with two metrics: TCP friendliness and
feasible network utilization, which we define as the max-
imum achievable network utilization before the through-
put collapses. To understand how the flow-level bench-
marks translate to application performance, we also evalu-
ated application-level benchmarks that measure the latency-
safety trade-off with traffic patterns based on real web sites.

4.1 Experiment Settings
Protocol Parameters: We use code from the PCP project
directly [5]. For each of the other mechanisms, we im-
plemented the scheme within UDP-based Data Transfer
(UDT) [4] with Selective ACK. The segment size is 1500
bytes including the header. The flow control window size
advertised by the receiver is 141KB, the same as that of Win-
dows XP [15]. In our evaluation, we still use 2 segments
as the default initial window size for TCP protocols (except
TCP-10). Note that although [6,15] suggested to set the ICW
to 10 segments, it is not universally deployed.2 Halfback sets

2We used the method of [2] to measure the ICW of the 10
most popular websites and found only four of them increased
their ICW, including one that set it as four segments.
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Figure 5: The number of normal TCP retransmissions of short flows in Planetlab exper-
iments

the Pacing Threshold to the flow control window size.

Evaluation Environment: We test Halfback in both the
wild Internet and controlled emulation environments. In
PlanetLab (§ 4.2.1), we randomly chose approximately 2.6K
pairs among 100 hosts to act as senders and receivers. The
locations of the nodes include Asia, North America, Aus-
tralia, Europe, and South America. The RTTs range from
0.2ms to 400 ms. The flow size is 100KB. We also test
Halfback with four home networks (§ 4.2.2) from differ-
ent providers (AT&T DSL with about 6Mbps downlink con-
nected to a home wireless router, Comcast with a wired
25Mbps downlink, ConnectivityU with shared WiFi in a
whole building and ConnectivityU with a wired connection)
in Champaign, Illinois. The clients are deployed behind
home networks and servers are on 170 PlanetLab nodes. The
clients request short flows of 100KB size from the servers.
All other experiments are performed in Emulab, with the
topology in Fig. 4 emulating a single-bottleneck access net-
work. We evaluated the performance of Halfback with a
wide range of realistic workloads and varying network pa-
rameters. Unless otherwise stated, the router’s buffer size is
the BDP between sender and receivers, 115 KB. For flow-
level benchmarks in Emulab, unless otherwise stated, short
flows have size 100 KB and have exponential interarrival-
time distribution.

4.2 Flow-level Benchmarks: Latency
4.2.1 Global Internet Evaluation on Planetlab

Fig. 6 is the CDF of the FCT of short flows in our Plan-
etLab evaluation across 2.6K node pairs. The FCT includes
both the data transmission time and connection setup time.
TCP has mean FCT of 1883 ms, with JumpStart significantly
better at 905 ms and Halfback at 791 ms (13% reduction).
Among the 2.6K experiments, 75% of them have no packet
loss during transmission and therefore, Halfback and Jump-
Start will have same FCT for those pairs. If we normalize
the FCT by RTT (Fig. 7), 60% (not 75% due to RTT estima-
tion inaccuracy) of the flows can be transmitted in 2 RTTs
which is one third of TCP’s time. Halfback’s lower mean
FCT than JumpStart is because ROPR can handle packet loss
better with proactive recovery and limited aggressiveness to
avoid timeout. Halfback’s 99th percentile FCT is 27.8% of
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Figure 8: CDF of FCT under cases where packet loss happened

TCP’s, 29.9% of TCP-10’s and 87.8% of JumpStart’s. To
further understand Halfback’s performance gain in the face
of packet loss, Fig. 8 shows the CDF of FCT for the 25% of
cases where packet loss does happen. Halfback achieves a
significant 193ms (21%) reduction in median FCT compared
to JumpStart.

We also measured the distribution of number of packet
retransmissions in a flow (Fig. 5). In general, the network
utilization is low in PlanetLab and therefore JumpStart and
Halfback both achieve low packet loss in 90% of trials. At
the same time, due to their aggressive startup phase, they
have relatively large 99th percentile packet loss. This hap-
pens when the bandwidth of the bottleneck link is notice-
ably smaller than the pacing rate in the aggressive startup
phase and/or the bottleneck router buffer is small. Note that
Halfback runs normal TCP retransmission in parallel with
ROPR; so ROPR masks the latency penalty from loss but
does not reduce the number of normal TCP retransmissions.

4.2.2 Home Access Networks
PlanetLab nodes are mostly in research institutes and

therefore, generally have more access bandwidth than nor-
mal end-user access networks. To get some insight into how
Halfback performs under actual home access networks, we
re-run the evaluation of § 4.2.1 with four clients behind four
different home networks and 170 servers on PlanetLab nodes
on Oct. 11th, 2015. We only compare the FCT of Halfback
and TCP in this experiment. Note that while we believe these
experiments are representative of home connections, the sev-
eral measurement locations should not be interpreted as rep-
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Figure 6: The flow completion time of short flows in Planetlab
experiments
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Figure 7: The number of RTTs used in the transmission of short
flows in Planetlab experiments
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Figure 9: CDF of FCT on home networks with different
providers

resentative of the individual providers’ general performance.
Fig. 9 shows that in these real home networks, Half-

back achieves significantly improved FCT compared to TCP.
Specifically, Halfback’s median FCT is 50%, 68%, 50% and
18% less than TCP’s in access networks provided by Com-
cast wired connection, ConnectivityU wireless, Connectivi-
tyU wired connection and AT&T wireless respectively. We
believe Halfback achieves less improvement in the AT&T
network because the evaluated network is of low bandwidth,
but further detailed investigation is needed. This experi-
ment also does not include the effect of CDN caching, but
it demonstrates that Halfback improves short flows’ FCT in
actual end-user networks. Larger scale and more compre-
hensive evaluation will be left to future work.

4.2.3 Effect of Bufferbloat
Overly-large router buffers can be filled by TCP, produc-

ing bufferbloat, which increases queuing delay and FCT of
short flows. In this section, we evaluate the average FCT for
different router buffer sizes. From the results, we demon-
strate that Halfback consistently works well across small and
large buffers. In this experiment, there is one background
TCP flow and multiple short flows sharing the bottleneck
link. The average interval between the short flows is 10 s.
The whole experiment runs for 600 s.

Fig. 10(a) shows the resulting average FCT. Compared
with the other schemes, Halfback, JumpStart, TCP-cache
and TCP-10 are less affected by bufferbloat as they finish
transmissions in fewer RTTs. Their average FCTs only in-
crease ∼500 ms, while TCP’s increases 1048 ms.

TCP-10, TCP-Cache, and JumpStart all begin sending
quickly. As a result, when router buffers are small (< 50KB)

they experience significantly higher FCT than for their op-
timal buffer size. Halfback also begins sending quickly but
ROPR helps it recover from the resulting loss, achieving up
to 45% lower FCT than JumpStart and 60% lower FCT than
TCP-10 when the buffer is small.

PCP does not perform well when it co-exists with TCP. A
PCP sender uses probing to estimate the queue length on the
end-to-end path. It will not send data, except probing, when
the queuing delay is increasing during the probing. But the
competing TCP senders keep building up the queue, so that
PCP is actually more conservative than the competing flows.

Fig. 10(b) shows the measured number of normal retrans-
missions, which equals the total number of packet losses
noticed by the receiver. Halfback only has 6 retransmit-
ted packets on average which is 10.6% of JumpStart when
the router buffers are small. We focus on normal retrans-
missions here to demonstrate that Halfback can effectively
use proactive retransmission to protect it from using TCP’s
normal retransmission mechanism, which causes prolonged
FCT. Halfback and JumpStart both have packet loss due to
their aggressive startup phase, but in JumpStart, the retrans-
mitted packets are sent at line rate which causes a large frac-
tion of them to be lost again and each lost packet may require
multiple retransmissions. Since the sender needs to wait un-
til timeout when the retransmitted packets are lost, the loss of
retransmission significantly increases the short flows’ FCT.
Halfback’s ROPR sends proactively retransmitted packets at
the rate of ACKs received which approximates the available
bandwidth at the bottleneck link. Therefore, retransmitted
packets are rarely lost again and Halfback can, compared
with JumpStart, have less retransmission overhead. PCP has
the smallest number of retransmission due to its conservative
probing scheme.

4.2.4 Effect of Flow Size Distribution
The previous experiments all used fixed-size 100 KB

flows. In this section, we evaluate FCT with flow size dis-
tribution drawn from measured distributions: a 10 Gbps
backbone link of a Tier-1 ISP [30], a 1500-node cluster in
a Microsoft data center network [21], and a private enter-
prise data center network [9]3. We truncate the distributions
and set the maximum flow size to be 1 MB (as longer flows

3Original data sets were not available; the distributions here
were approximated from figures in the publications.
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Figure 10: The performance of short flows for different router buffer sizes

would use TCP). The time interval between two flows is var-
ied to achieve 25% network utilization.

We investigate FCT as a function of flow size, shown in
Fig. 11. For flows of a few tens of KB, TCP-Cache (and in
a narrow region, TCP-10) achieves better performance than
Halfback, but after about 75 KB Halfback and JumpStart
have the best performance, achieving up to 313 ms lower
latency than TCP and up to 233 ms lower than TCP-10.

TCP-Cache has an unrealistic advantage here: the exper-
iments use a sequence of flows on an unchanging network
topology (Fig. 4) with constant utilization and flow size dis-
tribution. Real-world use of TCP-Cache, where senders en-
counter a diverse range of receivers across the public Inter-
net and network conditions change, would have poorer esti-
mates of the correct rate. A large-scale characterization of
TCP-Cache performance would require logs of server/client
interactions across time and is outside the scope of this study
(and is an interesting area for future work).

But why does TCP-Cache outperform Halfback? Half-
back sends at a high rate; however it paces its data over one
RTT, which can delay FCT for very small flows. Indeed,
Fig. 11 shows that TCP-Cache outperforms Halfback in a
very small range of small flow size. An easy refinement of
Halfback would be to send a first batch of data as a burst (ei-
ther 10 segments as in TCP-10 or a historically-sized win-
dow as in TCP-Cache) before Halfback’s Pacing Phase.

4.3 Flow-level Benchmarks: Latency-
Safety Trade-off

Mechanisms with aggressive initial startup phase come
with overhead that may be problematic and in extreme cases
could cause performance collapse. We need to ensure that
a mechanism chosen for short flows is safe, in the sense
that potential performance degradation is limited. In this
section we measure the effects when aggressive short flows
compete with (1) each other, (2) long TCP flows, (3) short
TCP flows, and (4) the transient disruption effect on ongoing
flows. The results indicate that the aggressive startup phase
used by both JumpStart and Halfback can increase aggres-

siveness, but Halfback’s ROPR phase significantly mitigates
this problem.

4.3.1 Short Aggressive vs. Short Aggressive
We begin with the most demanding environment: aggres-

sive short flows competing with each other under high uti-
lization. All flows run the same protocol, so there is no issue
of TCP-friendliness, but all flows are short and hence all in-
cur overhead to achieve low latency. This is a pessimistic
scenario, because as noted in [1], most Internet flows are
long video streaming flows and therefore, even in a highly
utilized edge network, the extra load incurred by more ag-
gressive short flows will be much smaller than the scenario
evaluated here. We evaluate Halfback in this challenging
network condition because we believe rate control protocols
should be reasonably robust to unusual scenarios in addition
to performing well in the common case.

The flows are all 100 KB, and we vary average network
utilization (transient utilization can be higher) from 5% to
90% in 5% increments. The key question is to what fea-
sible capacity we can push utilization before performance
collapse, with a spike in packet loss and FCT.

The results (Fig. 12) show that TCP, TCP-10, TCP-Cache,
and Reactive have feasible capacity of 85% to 90% utiliza-
tion. Due to its proactive retransmission that doubles bytes
transmitted, Proactive TCP has performance collapse at 45%
network utilization. JumpStart performs slightly better, with
feasible capacity of 50%. Halfback improves this signifi-
cantly to 70%, similar to PCP but with dramatically better
FCT than PCP.

4.3.2 Short Aggressive vs. Long TCP
In this experiment, 10% of the traffic is generated by short

flows and 90% is generated by 100 MB long flows. We vary
the short flows’ rate control mechanism, but the long flows
always run TCP. We vary the average interval between flows
to achieve different network utilizations, from 30% to 85%.
For lower-variance comparisons, all the experiments for dif-
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Figure 11: Flow completion time for different flow size under 25% network utilization for different network traffic distributions
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Figure 13: Flow Completion Time normalized by the Flow Completion Time of TCP for different network utilizations with 10% of
traffic created by short flows and 90% by long flows
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Figure 12: The performance of different mechanisms for dif-
ferent network utilizations while there are only short flows

ferent schemes use the same schedule of flow arrivals for
each network utilization.

Fig. 13 shows the average FCT of short flows and long
flows, normalized by their FCTs under a baseline scenario
where the short flows run TCP. For short flows, compared
with TCP, Halfback achieves around 56% lower FCT, Jump-
Start is 51% lower and TCP-10 is 29% lower. Proactive
TCP experiences a small increase in FCT as its proactive
retransmission increases the queuing delay and causes addi-

tional packet loss. For long flows, Proactive TCP increases
their FCT up to 25% due to its whole-flow proactive retrans-
mission and JumpStart increases it about 10% because of
the aggressive startup phase and its propensity to retransmit
the same packets multiple times. Halfback only slows long
flows by 3% as in its ROPR phase, the retransmission rate
approximates the available bandwidth and avoids affecting
other flows.

4.3.3 Short Aggressive vs. Short TCP
In this experiment, half of the flows employ a non-TCP

mechanism and the others use TCP. In each scenario, we
pick one non-TCP protocol and one network utilization
(ranging from 5% to 30% in steps of 5%). Figure 14 shows
the results as a scatter plot, where each point is a particular
protocol at a particular utilization. The x-axis is the average
FCT of TCP flows in that scenario, divided by the average
FCT if all flows run TCP; the y-axis is the average FCT of
the non-TCP flows in that scenario, divided by the average
FCT if all flows run the non-TCP protocol. In other words,
we measure the factor change in FCT for each kind of flow
due to co-existence.

The results show that Halfback, TCP-10, TCP-Cache and
Reactive TCP are TCP-friendly as their results are located
near (1, 1) where the FCTs of TCP flows and non-TCP flows
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Figure 14: TCP-friendliness of different non-TCP mechanisms

are not affected due to multi-protocol deployment. Halfback
has an aggressive startup phase, but as its FCT is small, it
leaves more space for TCP flows after its transmission.

JumpStart and Proactive TCP are somewhat non-TCP-
friendly. JumpStart, due to its aggressive startup and propen-
sity to retransmit the same packets multiple times, increases
the co-existing TCP flows’ FCT. Proactive has high over-
head from retransmitting every packet. Because PCP’s prob-
ing can only succeed when the TCP flows stop sending new
data, as we explained in §4.2.3, its FCT is increased while
co-existing with TCP.

4.3.4 Effect on Throughput of Ongoing Flows
For an important class of real-time applications, like video

conferencing and online gaming, throughput is very impor-
tant. Aggressive mechanisms for low latency may, unfortu-
nately, affect the background flows’ throughput. In this eval-
uation, we run a background TCP flow and after achieving
full bandwidth, start a short flow with Halfback or TCP. We
count the number of successfully transmitted packets in ev-
ery 60 ms and calculate each flow’s throughput. The results
are shown in Fig. 15.

Ideally, we would like the throughput of the background
flow and short flow to be like Fig. 15(a) in the sense that TCP
recovers quickly and short flows finish transmission fast.
When we employ Halfback for the short flows (Fig. 15(b)),
as the background flow employs TCP whose AIMD con-
gestion control needs a long time to recover from sending
rate reduction after packet loss, the sender needs 180ms to
achieve half bandwidth and around 2s, 1s longer than that
when we employ TCP for short flows (Fig. 15(c)), to achieve
full bandwidth.

However, this effect of throughput is mitigated by several
facts. First, the background flow can quickly achieve half
its former bandwidth, and could recover even more quickly
with a protocol like PCC [14]. Second, and most impor-
tantly, the same effect can be caused by short TCP flows. In
the current Internet, to achieve lower latency, many applica-
tions separate their data into multiple parts and start several
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Figure 16: Average response time for different machanisms
under different network utilization

TCP connections simultaneously. We evaluate how two TCP
flows each with half the flow size may affect the background
flow (Fig. 15(d)). In this case, it needs about 2.7s to recover
full bandwidth and the short flows still have longer FCT than
Halfback.

4.4 Application-level Benchmark: Web-
page Response Time

In the previous sections, we compared different ap-
proaches in terms of flow-level benchmarks including la-
tency performance and latency-safety trade-off. How-
ever, the flow-level benchmarks do not directly translate
to application-level performance. To better understand the
connection of flow-level benchmarks to application perfor-
mance, we evaluate a realistic scenario where a client ran-
domly requests the front page of one of the 100 most popu-
lar web sites [3] including all objects. The server will send
all the objects of this website in the same order as when
the client uses the Chrome web browser. We vary the inter-
arrival time between two web requests to control the network
utilization. In this experiment, we measure the average web
request response time (delivering all objects) at different net-
work utilizations for different protocols.

As shown in Fig 16, JumpStart’s response time becomes
larger than TCP and is 592ms (27%) larger than Halfback at
only 30% utilization. Even for lower utilizations, the order-
ing between protocols changes compared to flow-level re-
sults: JumpStart is now worse than TCP-10. Overall, Half-
back achieves much better latency-safety trade-off at the ap-
plication level for web browsing. This unexpected result
is because of the concurrent connections that web browsers
usually start simultaneously which can cause transient high
network utilization. JumpStart will incur high packet loss
and cannot recover quickly.

Halfback is also affected by the concurrent connection ef-
fect. The response time becomes slower than TCP at 55%
of network utilization, which is smaller than the flow-level
benchmark result in §4.3.2. However, since the average net-
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Figure 15: Throughput of flows for (a) Optimal situation (b) Halfback (c) One TCP (d) Two TCP flows with half flow size

work utilization is only 20% to 30% [19], and this exper-
iment is a pessimistic case in which all utilization is from
relatively short web flows (rather than movie downloads), it
is safe to deploy Halfback into the Internet. On the other
hand, JumpStart’s application-level results are unsatisfying.
In sum, compared to JumpStart, Halfback improves signifi-
cantly in both latency and safety at the application level.

5. DISCUSSION
In this section, we discuss and evaluate in detail why Half-

back’s ROPR phase contributes to its better performance
over other schemes.

In Table 1, we list several different schemes that can be
used for initial start-up phase and packet loss recovery phase.
For short flows, choosing initial start-up mechanism is im-
portant but relatively simple: it has to be more aggressive
than TCP’s conservative approach. As shown in Fig. 17,
when the network utilization is small, pacing all data out at
one RTT (as in JumpStart) achieves the smallest FCT which
is 80.1% of TCP-10’s and 50.8% of TCP’s. However, using
only this aggressive startup phase will cause performance to
collapse at 50% network utilization which is much smaller
than TCP-10’s (85%) and TCP’s (90%) feasible capacity.
This is because the normal TCP retransmission scheme can-
not quickly recover the lost packets and is still too aggressive
itself by bursting out all lost packets with high possibility to
incur more packet loss.

Therefore, a good design of proactive packet retransmis-
sion mechanism is needed. The key questions then are
what design decisions to make in terms of additional band-
width used, order of retransmission and retransmission rate.
Halfback proactively uses 50% additional capacity, reverse-
ordered transmission and retransmission rate that is clocked
by the receiving ACKs. In the following, we will experimen-
tally show that these are good design decisions for Halfback.

Additional bandwidth: We choose Proactive TCP (100%
additional bandwidth used) and TCP (0% additional band-
width used) to see how additional bandwidth used may af-
fect the feasible capacity. Both mechanisms have the same
startup phase and retransmission rate and direction. As
shown in Fig. 17, Proactive TCP’s feasible capacity is only
4̃5% and that of TCP is 90%. Therefore, excessive band-
width overhead can cause severe safety problems. But with-
out additional bandwidth, just like JumpStart and TCP, the
mechanisms cannot achieve good enough latency perfor-

mance. In our design, we try to efficiently use limited (50%)
additional bandwidth to achieve small FCT with relatively
large feasible capacity. It is also possible to dynamically
tune the additional bandwidth used for proactive retransmis-
sion according to the history of network conditions (e.g. in-
stead of sending one retransmission for each ACK, we could
send two retransmissions for every three ACKs). The trade-
off of that scheme is an interesting open question for future
research.

Retransmission direction: Here we test a new scheme,
Halfback-forward. Halfback-forward and Halfback both
use pacing startup, 50% additional bandwidth in proactive
retransmission at same rate. The only difference is that
Halfback-forward proactively retransmits packets in forward
order instead of reverse order. The feasible capacity of
Halfback-forward falls to 35% comparing to Halfback’s
70%. This is because first half of the flow is much less likely
to have packet loss than second half of the flow. Therefore,
the additional proactive transmission is effectively wasted
and simply adds unnecessary utilization on top of normal re-
transmission.

Retransmission rate: To choose the proactive retrans-
mission rate, we test Halfback and another new scheme,
Halfback-burst. The only difference between these two
mechanisms is Halfback proactively retransmits at a rate
matching received ACKs, while Halfback-burst uses line
rate for retransmission. Halfback-burst’s feasible capacity
is significantly smaller than that of Halfback since line rate
is much larger than the available bandwidth of the bottleneck
link. This causes many retransmitted packets to be lost and
wastes the bandwidth used in proactive retransmission.

In sum, Halfback’s ROPR does make good design deci-
sions with proactive, reverse-ordered and pacing-based re-
transmission. Without any one of them, ROPR, and thus
Halfback, will not work effectively. Finding an even better
trade-off is conceivably possible and would be an interesting
area of future work.

6. RELATED WORK
We discuss work related to the challenges of reaching a

high sending rate quickly, dealing with loss, and bufferbloat.
Startup Phase: Many projects have been proposed to accel-
erate the startup phase of TCP. These can be separated into
five categories. (1) Aggressive startup: [26] uses a high
initial sending rate and requires routers to support priority



Startup phases Lost packet recovery
additional bandwidth retransmission direction retransmission rate

Slow start
2-segment initial cwnd 0% Original ordering Pacing

10-segment initial cwnd 50%

Reverse-ordering Line ratePacing Pacing whole flow in one RTT 100%

Table 1: Different kinds of startup phase and lost packet recovery schemes.
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Figure 17: FCT and feasible capacity of mechanisms with dif-
ferent startup phases and lost packet recovery mechanisms.
queues to avoid negative effect. [6, 15] propose higher ini-
tial congestion window size, and [25] proposes JumpStart,
all of which we have evaluated here. (2) Sharing informa-
tion between connections or hosts to make flows start at a
more appropriate rate: These mechanisms need complex co-
operation [8] or even additional bandwidth [10]. They also
increase the difficulty of deployment by introducing a new
protocol. (3) Bandwidth estimation [13, 16] may not be
accurate as end hosts lack real-time visibility into the net-
work unless the routers explicitly mark available bandwidth
in the header [32] which increases the difficulty of deploy-
ment. We experimentally evaluated one bandwidth estima-
tion scheme [7]. (4) Caching schemes [28] will draw back
to Slow-Start when the variables are aged and need careful
tuning of their variables. We tested a caching scheme and
even under optimistic conditions, Halfback outperformed it
in terms of latency, albeit with more bandwidth overhead.
While caching performs better than TCP, it still may not
pick the optimal window size, and does not improve packet
loss response. (5) Faster connection setup mechanisms like
TCP Fast Open [31] and ASAP [37] focus on reducing the
time used in the three-way handshake of TCP connection es-
tablishment. While connection setup time is a fairly large
portion of short flows’ lifetime, the handshake is orthog-
onal to Halfback’s optimization mechanism. Halfback fo-
cuses on reducing the number of RTTs used for the actual
data transfer of short flows and therefore, any of the connec-
tion establishment optimizations can be a drop-in replace-
ment for Halfback’s connection establishment process. All

experiments in this paper include the connection setup time
without optimization.
Packet Loss Recovery: Two proposals [23, 36] reduce
packet loss at the last RTT of TCP’s slow-start by choos-
ing an appropriate slow-start threshold, ssthresh. As they are
based on bandwidth estimation, the inaccuracy of the band-
width estimation causes inaccurate ssthresh estimation. Be-
sides this, these schemes offer no help to short flows that are
too short to leave the slow-start phase, which is a very com-
mon case. Proactive retransmission [18] retransmits some
packets before receiving the signal of packet loss. These
mechanisms try to save time used to detect packet loss and
avoid a timeout when the retransmitted packet is lost or the
packet loss happens at the end of the flow. We have quanti-
tatively evaluated the proactive scheme of [18] in this paper.
Bufferbloat: Bufferbloat [20] happens when routers have
large buffers that cause long queuing delay, increasing the
reaction time of packet loss and causing large latency for
short flows. Many AQM algorithms, most recently PIE [29]
and CoDel [27], have been proposed to reduce queueing de-
lay. Note that reducing queuing delay (and thus RTT) is
fully complementary to our study of reducing the number of
RTTs in a flow; the improvements multiply. Also, the mech-
anisms we study here offer immediate benefit to a sender-
receiver pair, without requiring router or network configura-
tion changes. In addition to AQM algorithms, [17,24] reduce
the effect of bufferbloat at the end host by adjusting the re-
ceiver’s buffer size. This does not directly address FCT for
short flows.

7. CONCLUSION
This paper performed a measurement study of how well

existing proposals optimize flow completion time for short
flows while remaining safe to deploy. Based on our mea-
surement understanding, we designed Halfback, a new ag-
gressive transport scheme for short flows. Halfback substan-
tially reduces transmission delay and achieves high sending
rate quickly. In addition, with the help of Reverse-Ordered
Predictive Retransmission, Halfback works well for chal-
lenging situations, like high utilization networks, with lim-
ited effect on competing TCP flows. Finally, as Halfback
only requires changes in the sender and is TCP-friendly, it is
feasible to deploy into the current Internet. Some interesting
open questions remain to be answered, including theoreti-
cal modeling and analysis of Halfback, emulation with more



complex topologies and larger scale evaluation on end-user
access networks.
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