Naps: Scalable, Robust Topology Management in Wireless Ad Hoc Networks

Brighten Godfrey and David Ratajczak

IPSN 2004, Berkeley, CA April 27, 2004

What is Naps?

- Naps is a simple, randomized algorithm that "thins" an ad hoc network to a desired density of nodes per unit area without knowledge of the underlying density or node location.
- Potential applications: reducing contention among radios, smoothing sensing coverage
- Application in this paper: power saving
 - Nodes deployed at density λ
 - Density $\lambda_t < \lambda$ sufficient for multi-hop routing connectivity
 - Use Naps to thin network to density λ_t
 - Thinned nodes "sleep" (turn off their radios)

Model

Geometric random graph:

- Nodes distributed uniformly at random in a square region
- \bullet Average of λ nodes per unit area
- Unit radius connectivity

Naps performs well empirically even under relaxed assumptions.

Intuition

- λ = underlying density, λ_t = target density
- Easy way to thin to desired density: leave each node on with probability λ_t/λ (others sleep)
 - Nodes distributed like Poisson process with intensity λ
 - Poisson thinning property: waking set is like Poisson with λ_t
- Problems:
 - Needs global knowledge of λ
 - Node density may vary over space and time
- Naps uses an adaptive local estimate of underlying density

The Naps algorithm in words

Executed at each node:

- Iterate over time periods:
 - Broadcast HELLO message
 - Listen for HELLO messages from neighbors
 - If c HELLO messages received, sleep until end of period
- Initially and every 10 periods thereafter, period length is uniform-random $\in [0, T)$; otherwise period length is T.

Two parameters:

- Neighbor threshold c proportional to target density (e.g. c = 6)
- Time period T controls rate of turnover (e.g. T = 10 minutes)

Here c = 4.

0

Why it works

- \bullet Suppose node v has d neighbors
- \bullet HELLO messages received by node v are uniformly distributed
- \implies expected time between two messages is $\frac{T}{d+1}$
- \bullet Node v stays awake for c of these intervals per period T
- \implies awake for fraction $\frac{c}{d+1}$ of time
- $\mathbf{E}[d] = \pi \lambda$
- \implies average node stays awake for fraction of time $\approx \frac{c}{\pi\lambda}$
- i.e. for target density λ_t , pick $c = \pi \lambda_t$

Using Naps for power saving

- Goal: Turn off as many nodes as possible such that multi-hop routing still works, i.e.
 - (almost all) waking nodes are in a connected component and
 - (almost every) sleeping node has a waking neighbor
- Property of geometric random graphs: there is a *critical density* λ_c above which a large fraction of nodes are in a connected component w.h.p.
- Set λ_t above critical threshold \implies almost all waking nodes are connected
- Random graphs produced by Naps are not geometric random graphs...
- ...but we prove they also have a critical threshold above which connectivity is good.

Simulation: connectivity

MCA = Maximum Component Accessibility = fraction of nodes in or adjacent to the largest waking component

Simulation: connectivity

Area = 625. 1st percentile is minimum of 100 samples within a time period, then averaged over 20 trials.

Simulation: power savings

Network lifetime is time that MCA ≥ 0.9 . r = ratio of sleeping power to waking power.

Area = 900, c = 6, waking node lifetime = 100T. 5 trials.

Summary

- Naps selects a rotating set of "waking" nodes of a desired density
- Advantages
 - Low communication (one message sent per node, $\Theta(\lambda_t)$ received)
 - Simple, robust (performs *better* in mobile setting)
 - No location information necessary
- Disadvantages
 - Only probabalistic guarantees
 - Isn't optimal in terms of number of nodes turned off (but more efficient schemes are costly)
- Future work
 - Test performance in a real network
 - Estimate *target* density adaptively

Simulation: mobility

Area = 256, $\lambda = 5$, c = 6, r = 0.1, and waking node survives for time 100T. Averaged over 5 trials.

Simulation: scaling

1st percentile is over 100 samples within a time period. $\lambda = 5$.

Simulation: fraction of nodes awake

Area = 625.

Area = 625, c = 6, r = 0.1, and a waking node survives for time 100T.