Naps: Scalable, Robust Topology Management in Wireless Ad Hoc Networks

Brighten Godfrey and David Ratajczak
IPSN 2004, Berkeley, CA
April 27, 2004

What is Naps?

- Naps is a simple, randomized algorithm that "thins" an ad hoc network to a desired density of nodes per unit area without knowledge of the underlying density or node location.
- Potential applications: reducing contention among radios, smoothing sensing coverage
- Application in this paper: power saving
- Nodes deployed at density λ
- Density $\lambda_{t}<\lambda$ sufficient for multi-hop routing connectivity
- Use Naps to thin network to density λ_{t}
- Thinned nodes "sleep" (turn off their radios)

Model

Geometric random graph:

- Nodes distributed uniformly at random in a square region
- Average of λ nodes per unit area
- Unit radius connectivity

Naps performs well empirically even under relaxed assumptions.

Intuition

- $\lambda=$ underlying density, $\lambda_{t}=$ target density
- Easy way to thin to desired density: leave each node on with probability λ_{t} / λ (others sleep)
- Nodes distributed like Poisson process with intensity λ
- Poisson thinning property: waking set is like Poisson with λ_{t}
- Problems:
- Needs global knowledge of λ
- Node density may vary over space and time
- Naps uses an adaptive local estimate of underlying density

The Naps algorithm in words

Executed at each node:

- Iterate over time periods:
- Broadcast HELLO message
- Listen for HELLO messages from neighbors
- If c HELLO messages received, sleep until end of period
- Initially and every 10 periods thereafter, period length is uniformrandom $\in[0, T)$; otherwise period length is T.

Two parameters:

- Neighbor threshold c proportional to target density (e.g. $c=6$)
- Time period T controls rate of turnover (e.g. $T=10$ minutes)

The Naps algorithm in pictures

Here $c=4$.

The Naps algorithm in pictures

Here $c=4$.

The Naps algorithm in pictures

Here $c=4$.

Hello!

The Naps algorithm in pictures

Here $c=4$.

Hello!

The Naps algorithm in pictures

Here $c=4$.

Hello!

The Naps algorithm in pictures

Here $c=4$.

Hello!

The Naps algorithm in pictures

Here $c=4$.

The Naps algorithm in pictures

Here $c=4$.

Hello! Hello!

The Naps algorithm in pictures

Here $c=4$.

Hello!

Hello!

time
$\mathrm{t}+2 \mathrm{~T}$

Why it works

- Suppose node v has d neighbors
- HELLO messages received by node v are uniformly distributed
- \Longrightarrow expected time between two messages is $\frac{T}{d+1}$
- Node v stays awake for c of these intervals per period T
- \Longrightarrow awake for fraction $\frac{c}{d+1}$ of time
- $\mathrm{E}[d]=\pi \lambda$
$\bullet \Longrightarrow$ average node stays awake for fraction of time $\approx \frac{c}{\pi \lambda}$
- i.e. for target density λ_{t}, pick $c=\pi \lambda_{t}$

Using Naps for power saving

- Goal: Turn off as many nodes as possible such that multi-hop routing still works, i.e.
- (almost all) waking nodes are in a connected component and
- (almost every) sleeping node has a waking neighbor
- Property of geometric random graphs: there is a critical density λ_{c} above which a large fraction of nodes are in a connected component w.h.p.
- Set λ_{t} above critical threshold \Longrightarrow almost all waking nodes are connected
- Random graphs produced by Naps are not geometric random graphs...
- ...but we prove they also have a critical threshold above which connectivity is good.

Simulation: connectivity

$\mathrm{MCA}=$ Maximum Component Accessibility $=$ fraction of nodes in or adjacent to the largest waking component

Simulation: connectivity

Area $=625$. 1 st percentile is minimum of 100 samples within a time period, then averaged over 20 trials.

Simulation: power savings

Network lifetime is time that $\mathrm{MCA} \geq 0.9$. $r=$ ratio of sleeping power to waking power.

Area $=900, c=6$, waking node lifetime $=100 T .5$ trials.

Summary

- Naps selects a rotating set of "waking" nodes of a desired density
- Advantages
- Low communication (one message sent per node, $\Theta\left(\lambda_{t}\right)$ received)
- Simple, robust (performs better in mobile setting)
- No location information necessary
- Disadvantages
- Only probabalistic guarantees
- Isn't optimal in terms of number of nodes turned off (but more efficent schemes are costly)
- Future work
- Test performance in a real network
- Estimate target density adaptively

Simulation: mobility

Area $=256, \lambda=5, c=6, r=0.1$, and waking node survives for time 100T. Averaged over 5 trials.

Simulation: scaling

1 st percentile is over 100 samples within a time period. $\lambda=5$.

Simulation: fraction of nodes awake

Area $=625$.

Simulation: MCA vs. time

Area $=625, c=6, r=0.1$, and a waking node survives for time $100 T$.

