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ABSTRACT
Recent years have seen significant advancement in the field
of formal network verification. Tools have been proposed for
offline data plane verification, real-time data plane verifica-
tion and configuration verification under arbitrary, but static
sets of failures. However, due to the fundamental limitation
of not treating the network as an evolving system, current
verification platforms have significant constraints in terms of
scope. In real-world networks, correctness policies may be vi-
olated only through a particular combination of environment
events and protocol actions, possibly in a non-deterministic
sequence. Moreover, correctness specifications themselves
may often correlate multiple data plane states, particularly
when dynamic data plane elements are present. Tools in exis-
tence today are not capable of reasoning about all the possible
network events, and all the subsequent execution paths that
are enabled by those events. We propose Plankton, a veri-
fication platform for identifying undesirable evolutions of
networks. By combining symbolic modeling of data plane
and control plane with explicit state exploration, Plankton
performs a goal-directed search on a finite-state transition
system that captures the behavior of the network as well as
the various events that can influence it. In this way, Plankton
can automatically find policy violations that can occur due to
a sequence of network events, starting from the current state.
Initial experiments have successfully predicted scenarios like
BGP Wedgies.
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1 INTRODUCTION
Ensuring correctness of networks is a difficult task, but given
the critical nature of today’s networks, an important one too.
The growing number of network verification tools are tar-
geted towards automating this process as much as possible,
thereby reducing the burden on the network operator. Verifi-
cation platforms have improved steadily in the recent years,
both in terms of scope and scale. Starting from offline data
plane verification tools like Anteater [18] and HSA [11], the
state of the art has evolved to support real-time data plane
verification [10, 12], and more recently, analysis of the con-
figuration [3–5]. However, all existing verification techniques
have a fundamental limitation — they do not treat the network
as the evolving system that it is.

This puts significant constraints on our ability to verify net-
works. Correctness of the network may often not be about a
single data plane state, but a temporal property describing the
possible evolution of that state. For example, the network op-
erator may wish to verify the policy: Each data flow may pass
through any intrusion detection system, but always the same
one so connections are tracked. Furthermore, even simpler
reachability policies may often be satisfied by the current data
plane state, but violated when the state changes due to events
such as link failures, reconnections or arrival of packets. To
make things worse, there is significant non-determinism in
how the network state evolves, both within protocols as well
as outside. This creates problems that are particularly hard
to catch. BGP wedgies [6], where the converged network
state depends on non-deterministic events, are perhaps the
best known example, but there can also be other connectivity
problems caused by race conditions in interaction between
different protocols or multiple instances of the same proto-
col [2, 13, 21].
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Network verification techniques that exist today are not ca-
pable of checking such policies. Data plane analysis tools [10–
12, 18] can accurately analyze the present data plane state, but
cannot reason about future states that may potentially violate
the policy. There also exist platforms such as Batfish [4] and
ERA [3], which are designed to do “what-if” testing. With
these tools, the operator can try out various failure scenarios
(e.g. link failures) to see if the correctness policy is compro-
mised in any of them. ARC [5] is a tool designed to function
without operator involvement, but verifies shortest-path rout-
ing protocols under potential link failures, and hence is not
capable of modeling tricky BGP configurations. Neither ARC
nor any of the other techniques in existence are capable of
reasoning about arbitrary environment events, and the many
possible non-deterministic evolution paths that those events
can trigger. They may declare the network to be safe, while
in reality, a non-deterministic path of protocol execution may
cause correctness goals to be violated. Ideally, a network veri-
fication tool should examine all possible network evolutions
(subject to constraints of reason), and report violations that
occur in any possible future state.

In this paper, we propose Plankton, the first network ver-
ification platform that can reason about non-deterministic
evolutions of the network, in response to possible external
events. In addition to doing so, Plankton is capable of verify-
ing not only single-snapshot policies, but also temporal prop-
erties including protocol convergence. Plankton performs this
analysis by using an exhaustive state space search on a sym-
bolic model that includes the data plane, control plane, and
the environment. By combining ideas of data plane/control
plane equivalences with scalable state exploration techniques
such as Partial Order Reduction, Plankton can detect possible
policy violations that have thus far been undetectable. Mi-
crobenchmarks of a prototype of Plankton show that it scales
well to real-world networks.

2 MOTIVATION
The network verification platforms of today can be catego-
rized into a few major categories. We briefly discuss each of
these next.
Data plane verification: These tools verify the current
incarnation of the data plane for reachability violations.
Anteater[18] and HSA [11] perform this analysis offline,
whereas VeriFlow [12] and NetPlumber [10] are capable of
real-time verification, and thus, in SDNs, prevent incorrect
updates from ever reaching the data plane. Despite their use-
fulness, these tools are limited in the sense that they cannot
reason about violations before they actually happen. In other
words, policy violations need to actually exist in the network,
for them to be detected. This severely reduces the time avail-
able to the administrators to fix the problem.

Configuration verification under particular topology sce-
narios: These tools directly analyze the configuration rather
than a particular data plane incarnation. Hence, they are ca-
pable of predicting correctness violations even before they
occur in the data plane. Batfish [4] performs simulation of the
control plane to first generate a data plane, whereas ERA [3]
performs symbolic exploration of the control plane, by com-
puting equivalence classes of routing updates. BagPipe [22]
uses a theorem prover to check for policy violations in BGP
configurations. While these tools are an improvement over
data plane analysis platforms, they are not capable of automat-
ically detecting correctness issues which manifest as a result
of external influences, such as link failures. Detecting such
issues using these tools requires the operator to iterate the var-
ious environmental conditions, and the number of iterations
required can escalate very quickly.
Configuration verification under topology changes: This
class of techniques are capable of verifying policies under
potential failures that cause changes to the topology. The only
known tool in this category, ARC, uses a model that is not
expressive enough to capture tricky behaviors in protocols
such as BGP. More generally, this class represents approaches
that only look at the final topology, and misses out on any vi-
olations caused by the manner in which the protocol executes.
A good example that illustrates the limitations of these tools
are BGP Wedgies, which cannot be detected automatically by
these tools, since the topology is the same in both the ideal as
well as the non-ideal state of the network.

All the methods described above are designed only to check
reachability policies in a single data plane incarnation. They
are not capable of checking conditions that require correla-
tion of states, or about the convergence of the protocol. This
kind of ability is important in many practical settings, such
as verifying consistency of forwarding across the evolution
of the data plane state, verifying policies in presence of dy-
namic components, verifying correctness in transient states
etc. Plankton stands out as being capable of supporting these
goals. In summary, Plankton is the first formal verification
technique that can:
• detect policy violations due to various sources of non-

determinism.
• support liveness checks, including protocol conver-

gence.
• verify temporal properties over data plane states, when

the data plane evolves due to stateful elements.
• check policies over transient states.

Greater expressibility in Plankton is enabled by its unique
combination of symbolic modeling with scalable explicit state
exploration. This combination is realized by first defining
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Figure 1: Plankton Workflow

equivalences in control/data planes, and then defining net-
work models in terms of these equivalence classes in an ex-
plicit state model checker. The network models capture the
steps in protocol execution as well as other events such as
failures, reconnections, packet send etc. The model checker
provides fast exploration of this state space, with efficient
state keeping and other scalability techniques such as Partial
Order Reduction. We describe the overall design of Plankton
next.

3 PLANKTON WORKFLOW
Fig. 1 illustrates the verification workflow using Plankton.

The key component of Plankton that drives its temporal rea-
soning ability is an explicit-state model checker. These kind
of model checkers verify transition systems by exhaustively
searching through each state of the system. Their advantage
over the other class of model checkers (known as symbolic
model checkers) is that they do not require a precomputed
transition relation for the states of the system. So, they are
capable of executing even real code as part of the model
checking process. To achieve scalability, they rely on efficient
hashing-based state management[9] and state space reduction
techniques such as Partial Order Reduction.

More than the known benefits of explicit-state model check-
ers over symbolic ones, for Plankton, we are motivated by the
fact that we can look at individual data plane states produced
in the various execution paths of the network, and verify
them individually using a data plane verification tool such as
VeriFlow [12]. By defining predicates over individual data
plane states, we allow the model checker to verify properties
that correlate multiple states. These properties are expressed
in Linear Temporal Logic [19], a logic system designed to
express logical formulae interpreted over execution paths.

The model checker also allows us to verify liveness proper-
ties (properties of the form something good eventually hap-
pens), which may be violated by loops in the state transition
graph. These kind of policies cover interesting correctness
requirements, such as The protocol eventually converges.

Although the model checker does an enumerative explo-
ration of the network model, Plankton protects itself from
an impossibly large scalability challenge by defining the

model itself in terms of equivalence classes. Past work has de-
fined equivalence classes over varying scope - the data plane
only[12], control plane message paths[3] etc. In Plankton,
equivalence classes are defined over control plane messages
such that any two messages that belong to the same equiva-
lence class will be handled identically by all devices in the
network, even after applying any hypothetical changes that
are explored by the model checker. These equivalence classes
are computed by examining the protocol configuration at each
device in the network, and computing the coarsest partition
of the packet space such that each class has a distinct configu-
ration for each protocol throughout the network. While this
may appear to be a large number at first glance, Plankton does
not need to proactively reason about the fate of each of these
equivalence classes. When the policy to be verified is known,
the actual reasoning and analysis can be done just on the
equivalence classes that are needed for doing the verification
correctly.

The protocol models that we use in Plankton are defined
based on standardized interpretations of the protocols. This
is a limitation of Plankton, as it prevents implementation-
specific problems from being detected. In theory, it is possible
for Plankton to use vendor-specific models for each device,
but we believe our current approach is more pragmatic. In-
deed, past work on configuration verification has also relied
on similar models for protocols [3–5]. When exploring these
models, the model checker interprets the processing of one
update in any protocol by a device in the network as a state
transition. Depending on the update, this may or may not
result in changes to the data plane. This level of granular-
ity allows us to detect a relatively large set of issues while
maintaining good scalability.

The component of Plankton that is responsible for actually
detecting violations is the data plane verifier. The verifier is
invoked by the model checker every time a change is made to
the data plane state associated with an equivalence class. The
verifier is essentially responsible for evaluating predicates
over a given data plane state. This functionality serves two
purposes - first, a predicate can define data plane properties
that are expected to hold on all the data plane states that are
generated by the model checker. Second, these predicates can
be combined with LTL operators to express interesting tempo-
ral properties about the data plane evolution. Thanks to recent
advances in real-time verification of data plane states [10, 12],
we can afford to use data plane verification as an oracle for
end-to-end network verification, and still verify interesting
properties on acceptable timescales.

4 PROOF OF CONCEPT
We implemented proof-of-concept mappings for OSPF and
BGP in Promela, a modeling language that is interpreted by a
well-known explicit model checker known as SPIN[8]. These
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Figure 2: BGP Wedgie

Figure 3: A BGP configuration that doesn’t converge (Repro-
duced from [7])
models are currently designed to explore one equivalence
class at a time. This allows us to capture a large fraction
of interesting properties, while significantly simplifying the
model. However, we can choose to model multiple classes,
if a motivating case is found. We used this implementation
to test for known violations in networks. We modeled the
network illustrated in Figure 2, including the AS relation-
ships and primary/backup preferences. We checked for the
following condition: can AS1 be the next-hop for AS2, while
the link between AS3 and AS1 is up? In our first experiment,
we started from an unconverged network as the initial state.
Plankton’s search algorithm found a violation, and reported
an execution path where AS4 picks AS2 as its successor even
before it receives the advertisement from AS3. This possibil-
ity is in fact known, and to avoid it, network administrators
often bring up backups only after the primary path is estab-
lished. In our second experiment, we started from an “ideally
converged” initial state, with AS2 having picked AS4 as its
successor. In this experiment, Plankton finds the execution
where the primary link fails and then reconnects, causing the
network to converge to non-ideal state. These results match
the expectation, and illustrates the effectiveness of Plankton’s
exhaustive search. We also checked for convergence of BGP
in networks such as the one illustrated in Figure 3, where
violations were correctly identified by Plankton.

To microbenchmark the scalability of the approach, we ran
the following experiment: On datacenter topologies of vari-
ous sizes, we configure BGP as described in RFC 7983[15].
We simulate a case where BGP attributes are configured to
allow multipath, but due to a misconfiguration, only one path
is chosen between any source-destination pair. With such a
misconfiguration, the paths selected can often depend on the
order in which updates are received at various nodes [14]. On
such a network, we check policies which state that the path
between two edge switches should pass through one among
a particular set of aggregation switches. Plankton evaluates
various nondeterministic convergence paths in the network,
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Figure 5: CDF of time taken to check for wedgies for specific
origins in the CAIDA AS topology

and determines a violating sequence of protocol steps. Fig-
ure 4 illustrates the average and worst-case time taken by
Plankton to find the violations. These numbers were obtained
on a 4 GHz Intel Core i7 CPU, running single threaded. The
numbers are promising — the checks ran in acceptable time
for real-world mid-scale enterprise datacenter networks.

We also ran an experiment using the CAIDA AS topol-
ogy [17], by randomly picking ASes with two providers and
marking one as primary and the other as backup. Then, we
check this configuration for potential Wedgies. Figure 5 il-
lustrates the CDF of time taken to finish verification (with
either a positive or negative result). As can be seen, most
checks finish within milliseconds. We note here that this is
possible after many rounds of optimizing our BGP model,
without which the check never terminates within a timeout
of 5 minutes. We describe these optimizations in the next
section.
5 DISCUSSION
In this section, we discuss some of the design choices and
optimizations in Plankton. Some are implemented in our pro-
totype, but may be extended; some are entirely new, to be
tackled in future work.

5.1 Why Model Checkers?
The first question one may ask is how a model checker is
better than naive exhaustive exploration using simulation.
This is an important question particularly because we use an
explicit state model checker rather than a symbolic one, which
means that it generates each individual state of the system
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Figure 6: Partial Order Reduction in Plankton
separately, and performs the verification. The benefits that we
obtain from using the model checker are primarily as follows:
• Efficient branching: In cases where the protocol ex-

ecution runs into a large number of steps, having a
state-machine representation with the ability to traverse
states both forward as well as backward avoids the need
to repeat steps over and over.

• Ability to verify temporal properties: The model
checker is equipped with techniques for on-the-fly
model checking, which enables Plankton to verify tem-
poral properties specified in LTL, and also detect issues
such as non-convergence.

• Efficient state keeping: The model checker employs
techniques such as bitstate hashing to efficiently carry
out the bookkeeping associated with the exploration.
(In principle this can be implemented in any simulation-
based exploration). We discuss bitstate hashing in detail
later.

5.2 Optimizations in Plankton
Partial Order Reduction: Partial Order Reduction (POR) is
an optimization used by model checkers when exploring large
state spaces. It leverages the fact that certain actions can be
applied in any order, without altering the outcome. So, the
model checker needs to verify only one sequence of actions,
rather than all possible sequences. This optimization is partic-
ularly useful in analysis of asynchronous systems, and hence
should make a significant difference in analyzing network
protocols, which have significant asynchronous behavior (For
example, in a network running OSPF, only a single order of
message delivery needs to be explored, if transient states are
not relevant to the correctness property).

To ensure that we achieve good POR, Plankton performs a
reduction separate from the automatic reduction done by the
model checker. This reduction may eliminate certain transient
states from being checked, while not compromising the cor-
rectness of verification. If the policy being verified concerns
only the converged states of the network, Plankton tries to
eliminate as many transient states as possible, while retaining
all possible converged states. If, on the other hand, transient
states are indeed relevant to the check, and there exist one
or more transient states where the policy could be violated,
Plankton ensures that at least one such state will be checked.
This is done by defining the reduction strictly based on the
policy being verified. Once the type of policy and the exact

parameters for it are known, the POR mechanism generates a
conservative dependency model that captures which protocol
steps can be executed independently of which others without
affecting the property. The network program that is passed to
the model checker allows non-deterministic choice of actions
only in cases where the order of the actions can potentially
affect the satisfaction or violation of the property. Thus, only
a reduced extent of non-determinism needs to be exhaustively
explored by the model checker before concluding whether the
policy is satisfied or not. For example, consider the fat-tree
network illustrated in Figure 6. Assuming that the network
runs BGP as described in RFC 7983, when verifying a path
sequencing policy in converged states, the dependency model
determines that core nodes 1 and 3 are independent, so, in
states where both nodes are enabled only one order of exe-
cution is explored. Our ongoing work aims to create a more
general POR mechanism with reduced dependency on the
policy being verified.
Parameterized Modeling: Our current experiments have
used models that are parameterized by equivalence class. In
other words, we model only one equivalence class at any
given time. As we discussed in §3, these equivalence classes
are defined such that they do not need to be split further even
when the network reconverges in response to events. So, veri-
fying one equivalence class in isolation is feasible. However,
there do exist correctness policies that cannot be evaluated by
looking at a single equivalence class alone. For example, the
policy that two different packets should always have the same
fate starting from a particular device may not be verifiable
with this model, if the packets happen to be in different equiv-
alence classes (if not, the property is vacuously satisfied).It is
indeed possible to use Plankton’s approach to look at more
than one equivalence class simultaneously. We do not do that
yet, because we believe the single-EC approach is already
capable of capturing a rich set of policies.
Cone of Influence Reduction: Often, only a small fraction
of the overall set of applicable events would be relevant to
the verification. For instance, when verifying a policy about
a particular OSPF path under failures, we can restrict the
set of potential failures to the links that are on the shortest
path. Cone of influence reduction limits the set of applicable
events to only those that can make a difference to whether
the correctness requirement is satisfied or not. This reduction
can be made at varying granularity, which determines its
effectiveness. In our current experiments, the reduction is
done very conservatively while a protocol is being executed.
So, we cannot eliminate many steps that are relevant in some
phase of protocol execution, but not in others. By increasing
granularity to a level where every step is executed only if it
can affect the end-result, we can avoid exploring unnecessary
executions altogether. We are working on heuristics to
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Experiment Without bitstate
hashing

With bitstate
hashing
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Figure 7: The effect of bitstate hashing on memory use
identify the relevant steps accurately.
Bitstate Hashing: Bitstate hashing is an optimization that is
provided to Plankton by the model checker. It refers to the
use of a bloom filter to keep track of explored states, rather
than storing them explicitly. Naturally, this can cause some
false negatives, but model checkers such as SPIN provide
probabilistic guarantees of correctness when using bitstate
hashing. Using this technique can provide significant reduc-
tion in memory overhead, as illustrated in Figure 7. Coverage
is measured using a hash factor, which is recommended to be
greater than 100. The observed hash factor in our experiments
was greater than 1 million, which makes bitstate hashing a
viable option. Nevertheless, we have not had to use bitstate
hashing thus far, having seen good memory scaling.
5.3 Possible Future Optimizations
Iterative Deepening: Even with optimizations like partial
order reduction, there can still be a large number of non-
deterministic paths that are possible, only few of which lead
to an actual violation. In some cases, picking the right non-
deterministic path to explore can make the difference between
a quick result and pointless exploration. With Iterative Deep-
ening, all paths are explored up to a certain depth before
starting again and exploring up to a greater depth. Naturally,
this approach has benefits only when there is a real violation
to be found, and the path from the initial state to the viola-
tion is relatively short. When the policy is actually satisfied,
this method of search is more expensive than Depth First
Search. However, since any possibility of a quick violation
is eliminated first, a long-running IDS indicates that there
is no reasonable violation to be found, which constitutes a
best-effort result, that may often be acceptable.
Incremental Modeling: Plankton is required to repeatedly
compute data plane state under various environmental scenar-
ios. Often, only the result, which is a deterministic function
of the current environment input, is necessary. For example,
when verifying properties over a deterministic shortest-path
routing protocol, if the transient states are not relevant to the
property, Plankton can choose the most efficient way to gen-
erate the data plane state. Given the manner in which network
protocols operate, this would mean retaining the previously
generated data plane state and then simulating events that
would turn the previous environment into the new environ-
ment. In the shortest-path routing example, if verifying under
single link failure, Plankton only needs to reconnect the pre-
viously failed link and then disconnect the current failed link.

We expect that depending on the protocol and the correctness
invariant being verified, such incremental computation will
provide significant improvements to scalability.
Heuristic Search: The optimizations discussed so far are
designed to prune the large state space to practical proportions.
There can be significant benefit in also directing the model
checker’s search process, so that it first explores paths that
are more likely to produce a violation to the policy. There
already exist model checkers with heuristic support, so the
biggest challenge will be in defining effective heuristics for
the policies that Plankton verifies.
Symbolic Model Checking: The current architecture of
Plankton already has some elements of symbolic analysis,
since models are created with respect to equivalence classes.
To push this further, the explicit state model checker can be
replaced by a symbolic model checker, which would explore
multiple non-deterministic execution paths simultaneously.
Such symbolic exploration can bring benefit in networks like
datacenters where significant symmetry exists. The challenge
in using symbolic model checker is that we rely on a data
plane verifier to do the actual data plane check, which only
looks at a single data plane state. The first step towards mak-
ing the transition will be to equip data plane verification tech-
niques to handle multiple data plane states simultaneously.
Switching to symbolic model checkers would also make it
difficult to build models for complicated protocols, since the
entire transition system needs to be appropriately encoded
before starting the verification process.
6 RELATED WORK
Similarities and differences of Plankton to existing network
verification techniques have been discussed in previous sec-
tions. We have shown that Plankton is the first system capable
of analyzing network evolution over time, and in presence
of non-determinism. Other efforts for formal methods in net-
working, such as correct-by-construction network manage-
ment techniques[1, 16, 20], share Plankton’s goal of elim-
inating errors in networks, but they follow a more radical
approach that requires re-architecting the network. The use
of model checking as a tool for verification is well studied,
but its use in combination with network equivalence classes
to create a compact network model, and the use of this model
to verify network properties is a new research direction.

7 CONCLUSION
We described Plankton, a formal verification tool for net-
works that performs explicit-state verification of a network
model defined over equivalence classes. Plankton is capable
of automatically detecting violations triggered along only par-
ticular non-deterministic paths, including for properties that
are themselves temporal in nature. These abilities of Plankton
represent a significant improvement in the scope of network
verification itself, bringing us one step closer to error-free
network design.
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