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The goals

e Distributed Hash Tables partition an ID space amanmpdes

— Typically: each node picks one random ID
—Node owns region between its predecessor and its own ID
— Some nodes gedg n times their fair share of ID space

e Goal 1: Fair partitioning of ID space

—If load distributed uniformly in ID space, then this produces a
load balanced system
—Handle case of heterogeneous node capacities

e Goal 2: Use heterogeneity to our advantage to reduce route lengt!
In overlay that connects nodes
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Model & performance metric

e . Nodes

e Each node has a capacity,, (e.g. bandwidth)
e Average capacity i$, total capacity»

e Shareof nodev Is

fraction of ID space that owns
share(v) = .

Cy /N

¢ Want low maximum share
¢ Perfect partitioning has max. share =



Basic Virtual Server Selection

e Standard homogeneous case
— Each node pick®(logn) IDs (like simulating©(log n) nodes)
—Maximum share i) (1) with high probability (w.h.p.) in homo-
geneous system

—e —e —e —o

\ Multiple disjoint segments j

e Heterogeneous case

—Nodev simulate$ (¢, log n) nodes (discard low-capacity nodes)
— Maximum share i$)(1) w.h.p. for any capacity distribution

— @ —e —e —o

High capacity node 4 4 4 4 4 4




Basic-VSS: Problems

¢ To route between nodes, constructaaerlay network
e With O(log n) IDs, must maintair®(logn) times as many overlay

connections!

e Other proposals use one ID per node, but...

—all require reassignment of IDs in response to churn, and loac
movement is costly

—none handles heterogeneity directly

—some can’t compute node IDs as hash of IP address for securit
—some are limited in the achievable quality of load balance
—some are complicated



| ow Cost Virtual Server Selection

e Pick©(c, logn) IDs for node of capacity, as before...

e ...butcluster themin a random fractim@(%ﬁ) of the ID space

— Random starting location

—Pick O(cylogn) 1Ds spaced at intervals e¢  (with random
perturbation)

e Ownership of ID space is still in disjoint segments
e Why does this help?
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LC-VSS: Overlay Topology

e When building overlay networlsimulate ownership of contiguous
fraction ©(“ Og”) of ID space

Real] —o—0—@ o—eo o o—eﬁt
Simulated

e Routing ends at nodamulatingownership of target ID,
not real owner

e But clustering of IDs=- real owner is nearby in ID space
=- can complete route i®(1) more hops using successor links
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LC-VSS: Theoretical Properties

e Works foranyring-based overlay topology
— Y. LC-VSS applied to Chord
e Compared to single-ID case,

—Node outdegree increases by at most a constant factor
— Route length increases by at most an additive constant

e Goal 1. Load balance
— Achieves maximum share of+ ¢ for anye > 0 and
any capacity distribution
x ...under some assumptions: sufficiently good approximation

of n and average capacity, and sufficiently low capacity thresh:
old below which nodes are discarded

— Tradeoff. outdegree depends on



Max Share Proof

Lemma1l If nodev has at least one ID in the ring and = ©(log n), then (1)v has  whena > ;7—72‘ In n. Again by Lemma??, there are at 2~4n frames, so the lemma and let P’ be the corresponding value for the;s. By the above discussion we have
€

betweeno — O(1) and O(1) IDs w.h.p., and (2 has at . 4 n—= —
|eagwaf;{)/<jgﬁ>) IDs th?p. acveru + O(1) IDs whp @ follows from a union bound over them. B Pr[P <m/2] < Pr[P’ < m/2],andBP’] = zp = 535y, 50
Proof: (Of Theorem??) If node v is discarded, its share & so we need only con-
sider nodes in the ring. Such a nodehooses one ID in each af. < acyveyy +O(1) ’
Proof: (1) Note that, due to the estimaton error parameters, the fagtolazy update frames (Lemma 1). Pr[P <m/2] < Pr[P’ <m/2]
of &,, and the factor2 lazy update offi, we always havez,, within a factorycvy. We first fix the nodes’ choices of the frames in which they place their IDs. Let = P[P <(1-9)- _m ]
of ¢, and 7 within a factor2+v,, of n w.h.p. Thus, for some constait, the num- X, ..., X,, be the fraction of the ID space owned by each of notelDs. The ran- 2(1 —9)

ber of IDs thatv chooses is at most0.5 + éya(n)] < éya(n) + O(1) < domness in theX;s is over the intra-frame positions of the nodes’ IDs, which are chosen

Yevucvklog(2ynn) + O(1) < yeyua(n) 4+ O(1). The lower bound follows  independently and uniformly at random. By Lemma 2, we may assume that each frame has - 4?;7528)

similarly, noting that we are not concerned with nodes that have been discarded. (2) Skuieast one ID. Thus, the interval assigned toithelD may span at most one frame bound- < e - (Chernoff bound)

larly, if v has decided to stay in the ring, we must haye > ~4 and the bound follows by ary, soX; depends only on the locations of the IDs in its frame and in the counterclockwise g os?

the above technique. B preceding frame. Thus, the odd-index&t;s are mutually independent, as are the even- < O(«; m) (Lemma 1 part (2))
We now break the ring intcamesof length equal to the smallest spacing parameteindexedX ;s. We will bound the share of these two groups in the same way, one at a time. -

Smin Used by any node. The following lemma implies that ;,, > 1/(2vnn) w.h.p.  Consider first the odd-indexel ; s. = o(nfz)

Break each frame intd bucketof equal size; we'll pickd later. A bucket isoccupied
8 when some node other thanchooses an ID inside it, andésnptyotherwise. To analyze the
Lemma2 Let8 = (1 — veyuyd)/(Veyu)- Whena > [S’YTTZI Inn, each frame nodewv’s share of the ID space, we'll count the number of empty buckets counterclockwigghenca >
contains atleas{1 — €)Bansmin — O(1) IDsw.h.p. forang > 0. follpwing v's cho_sen IDs. D_efine an infinite sequence Qf random va_riahljeseach_of
which will be the indicator variable for the event that a particular bucket is occupigavill .
correspond to the bucket counterclockwise-following first odd-indexed ID. Supposg; fair sharec,, /n, we have
Proof: Assume that no node has more than one ID in any frame; if this is not the case, g#fresponds to thith bucket followingv's £th ID. Then we have two cases. (DY =0,
can break the high-capacity nodes for which it is false into multiple “virtual nodes” withoqtrjJrl corresponds to the next bucket following the same ID. (2) Otheniige, 1 corre- 1 N s
disturbing the rest of the proof. sponds to the first bucket following the next odd-indexed ID, i.e. (thet 2)th one. If share(v) < . (ﬂ + #) .
Consider any particular framg. Let X, be the indicator variable for the event that 1, /2 < ¢ + 2 then we simply sel’; 11 = 1. Thus, the number of zeros in the sequence - cy/m d dp(1 —9)
nodew chooses an ID inf and letX = Z X. We wish to lower-boundX. Sup- of Y}’'sis the number of buckets entirely owned bis m /2 odd-indexed IDs.
Y With the goal of upper-bounding the number of zeros, we first deal with depen- Recall thatd is arbitrary. Taking the limit asi — oo, we havedp — r =
dence among th&’;s. By Lemma 2 we may assume that each frame has atteast (1 — &)Bsminna(n) — O(1) so

2 ;7;5) In n. In this case, counting now both odd- and even-indexed points,
d

nodev owns at mostn + ? buckets, each of size,,, ;, /d. Normalizing byv’s

m
(1-9)

posewv choosesm, points. Sincef covers a fractions,, ;, of the ID space, we have
E[Xy] = mysSmin. Bylemmalm, > acy/(vevu) — O(1) for nodesR in

the ring. Thus (1 — &)Bsminna(n) — O(1) IDs for sufficiently largec. View Y7,Ys,...asa
’ process. IfY; _1 = 1, then we are in Case (2) aid; corresponds to a frame independent
of those ofY7y, . . ., Y; _1, so there are at leastIDs distributed u.a.r. in the frame which share(v) < 1 . MSmin
Ex] = E[Xo] may occupyY’;'s bucket. If we are in Case (1) thei;’s bucket is in the same frame as T cew/n (1=08)((1 —€)Bsminna(n) — O(1))
- v that of Y; 1, which implies that some of the buckets in that frame are empty, in which case 1 m
vER there are at least IDs distributed u.a.r. in aubsedf the frame includingy’; 's bucket. This < —_ .
discussion implies that, regardless of the history of¥fje, the probability that”; = 1 is ey (1=08)(1—¢€)(1—e")Ba(n)
. _ atleastl — (1 — 1/d)". Formally, we define another sequence of varialfigswhich are 1 aln)e + 01
> E Smin (@cy/(Yevu) — O(1)) (Lemmal) independent Poisson trials with success probabjlitp be picked below. For any indeces < = ()evyeru /( ) (Lemma 1 part (1))
veR J1,- - - 3%, We have ey (1=98)(1—¢e)(1—e")Ba(n)
. (1+5//)<'Yc7u)2
> —-0(1) + E ZminCy k < (1-8)(1 —e)(1— )
Yevu YeYuVd

veER PrlY;, = ---=Y; =1 = IIPr[yﬂ'£:1|YJ’1:”':yﬂ'z—1:1]

Smin & =1
= -0+ E cv

YeYu k . - _a ;o -
veR ( ( 1 ) T) with probability1 — O(n™<) foranye’,e’” > 0 and sufficiently largen, so by a
> I I 1—(1—-=

SminQ . - d

> —0()+ = - (1 = vevura)n (Claim??) P
YeYu :
= Bansmin — O(1), > (1 _ efr/d) k union bound, this is true of all nodes w.h.p. Finally, we require thas the maximum of
with 3 defined as in the lemma statement. (Note that although Cl&imas stated in the = Prz; = = Zj, =1

context of Chord, it applies to our partitioning scheme without modification.) A Chernoff

bound tells us that the requirement given above and that of Lemma 2; settirg e for convenience of presen-

where we have chosen the success probability forZhe to bep = 1 — e~/ This
implies that an upper bound the numberQ3 in the independenZ ; sequence is also an

Pr[X < (1 — £)E[X]] < e (Bans,in —0(1))e2/2 upper bound the number Ofs in the _dependem’k sequence, a_fg(?t which we use next.
If we seem /2 ones in the firste Y;s, then by the definition of the sequence, we 8(1—e)lnn 8 1 8 1
2 i i tation, we havemax { Inyehu RT A < Znledu BN g

_ —Bans,ine</2 have seen all the zeros, of which there are at most m /2. Thus nodev will own ; 2 1= 25 > 72 PR
= O(e min ) ' Yde (I=vevuvd)e (A=vevuva)vae

at mostz — m /2 complete buckets, plug - m /2 partial buckets (one at each end of
< E—Basz/(él'yn) (Lemma??) the m /2 contigluous sequences of complete buckets), for a total of at most 7."/2

buckets due to itsn /2 odd-numbered IDs. We now show that we see the requingt2
= O(n72) succeses w.h.p. when = ﬁ. Let P be the number of’s in the firstz Y;s,  required by the theorem. ]



Simulation

e The Contestants

— Chord: Basic Virtual Server Selection
— Y. LC-VSS applied to Chord’s overlay topology

e Static simulator

— Important simplification: Nodes know and average capacity
— These would actually be estimated
—and there would be some “lazy update” to provide hysteresis



Simulation: Maximum share
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e Parameter: o = number of virtual servers per unit capacity
e Homogeneous capacities shown here
e Chord witha = 1 increases to maximum shaxel3.7.



Max Share/Degree Tradeoff
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Goal 2: Exploit Heterogeneity

e Even high-capacity nodes have a single set of overlay links
e Make use of unused capacity: pick denser set of links
e In Chord witha = 1: O(c¢, logn) total outlinks

—O(logn) links in O(¢,) finger tables (one per virtual server)
e In our schemeO(¢, logn) total outlinks

—... all in one dense finger table
— More structured topology- reduced route length



Simulation: Effect of heterogeneity
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Route length vs. capacity distribution in a 16,384-node system.




Simulation: Effect of heterogeneity
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e Asymptotiaoute lengths compared to homogeneous case
Chord: < 23% shorter Yy: > 55% shorter



Simulation: Congestion
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Conclusion

e Costs
—Some additional overhead, especially when particularly good
balance desired

— Will incur additional load movement when number of nodes or
average capacity changes by a constant factor

— Require estimates of and average capacity
— Assumes uniform distribution of load in ID space

e Benefits

— Simple way to achieve good load balance at low cost

— Compatible with any ring-based overlay

— Adds flexibility in neighbor selection to any overlay

— Takes advantage of heterogeneity to reduce route length
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Simulation: Degree
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Simulation: Max Share vs. Capacity
Distribution
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