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The goals

• Distributed Hash Tables partition an ID space amongn nodes

– Typically: each node picks one random ID
– Node owns region between its predecessor and its own ID
– Some nodes getlog n times their fair share of ID space

• Goal 1: Fair partitioning of ID space

– If load distributed uniformly in ID space, then this produces a
load balanced system

– Handle case of heterogeneous node capacities

• Goal 2: Use heterogeneity to our advantage to reduce route length
in overlay that connects nodes
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Model & performance metric

• n nodes

• Each nodev has a capacitycv (e.g. bandwidth)

• Average capacity is1, total capacityn

• Shareof nodev is

share(v) =
fraction of ID space thatv owns

cv/n
.

•Want low maximum share

• Perfect partitioning has max. share =1.



Basic Virtual Server Selection
• Standard homogeneous case

– Each node picksΘ(log n) IDs (like simulatingΘ(log n) nodes)
– Maximum share isO(1) with high probability (w.h.p.) in homo-

geneous system

Multiple disjoint segments

• Heterogeneous case

– Nodev simulatesΘ(cv log n) nodes (discard low-capacity nodes)
– Maximum share isO(1) w.h.p. for any capacity distribution

High capacity node

Low capacity node



Basic-VSS: Problems
• To route between nodes, construct anoverlay network

•With Θ(log n) IDs, must maintainΘ(log n) times as many overlay
connections!

• Other proposals use one ID per node, but...

– all require reassignment of IDs in response to churn, and load
movement is costly

– none handles heterogeneity directly
– some can’t compute node IDs as hash of IP address for security
– some are limited in the achievable quality of load balance
– some are complicated



Low Cost Virtual Server Selection
• PickΘ(cv log n) IDs for node of capacitycv as before...

• ...butcluster themin a random fractionΘ(cv log n
n ) of the ID space

– Random starting locationr

– Pick Θ(cv log n) IDs spaced at intervals of≈ 1
n (with random

perturbation)

• Ownership of ID space is still in disjoint segments

•Why does this help?
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LC-VSS: Overlay Topology
•When building overlay network,simulate ownership of contiguous

fractionΘ(cv log n
n ) of ID space

Simulated

Real

• Routing ends at nodesimulatingownership of target ID,
not real owner

• But clustering of IDs⇒ real owner is nearby in ID space
⇒ can complete route inO(1) more hops using successor links
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LC-VSS: Theoretical Properties

•Works foranyring-based overlay topology

– Y0: LC-VSS applied to Chord

• Compared to single-ID case,

– Node outdegree increases by at most a constant factor
– Route length increases by at most an additive constant

• Goal 1: Load balance

– Achieves maximum share of1 + ε for anyε > 0 and
any capacity distribution

∗ ...under some assumptions: sufficiently good approximation
of n and average capacity, and sufficiently low capacity thresh-
old below which nodes are discarded

– Tradeoff: outdegree depends onε



Max Share Proof
Lemma 1 If nodev has at least one ID in the ring andα = Θ(log n), then (1)v has
betweenαcv/(γcγu) − O(1) andαcvγcγu + O(1) IDs w.h.p., and (2)v has at
leastγdα(n)− O(1) IDs w.h.p.

Proof: (1) Note that, due to the estimaton error parameters, the factorγc lazy update
of c̃v , and the factor2 lazy update ofñ, we always havẽcv within a factor γcγu
of cv and ñ within a factor2γn of n w.h.p. Thus, for some constantk, the num-
ber of IDs thatv chooses is at mostb0.5 + c̃vα(ñ)c ≤ c̃vα(ñ) + O(1) ≤
γcγucvk log(2γnn) + O(1) ≤ γcγuα(n) + O(1). The lower bound follows
similarly, noting that we are not concerned with nodes that have been discarded. (2) Simi-
larly, if v has decided to stay in the ring, we must havec̃v ≥ γd and the bound follows by
the above technique.

We now break the ring intoframesof length equal to the smallest spacing parameter
smin used by any node. The following lemma implies thatsmin ≥ 1/(2γnn) w.h.p.

Lemma 2 Let β = (1 − γcγuγd)/(γcγu). Whenα ≥ 8γn
βε2 ln n, each frame

contains at least(1− ε)βαnsmin − O(1) IDs w.h.p. for anyε > 0.

Proof: Assume that no node has more than one ID in any frame; if this is not the case, we
can break the high-capacity nodes for which it is false into multiple “virtual nodes” without
disturbing the rest of the proof.

Consider any particular framef . Let Xv be the indicator variable for the event that

nodev chooses an ID inf and letX =
∑

v
X. We wish to lower-boundX. Sup-

posev choosesmv points. Sincef covers a fractionsmin of the ID space, we have
E[Xv ] = mvsmin. By Lemma 1,mv ≥ αcv/(γcγu) − O(1) for nodesR in
the ring. Thus,

E[X] =

∑
v∈R

E[Xv ]

≥
∑
v∈R

smin (αcv/(γcγu)− O(1)) (Lemma 1)

≥ −O(1) +

∑
v∈R

sminαcv

γcγu

= −O(1) +
sminα

γcγu

∑
v∈R

cv

≥ −O(1) +
sminα

γcγu
· (1− γcγuγd)n (Claim ??)

= βαnsmin − O(1),

with β defined as in the lemma statement. (Note that although Claim?? was stated in the
context of Chord, it applies to our partitioning scheme without modification.) A Chernoff
bound tells us that

Pr[X < (1− ε)E[X]] < e
−(βαnsmin−O(1))ε2/2

= O(e
−βαnsminε2/2

)

< e
−βαε2/(4γn) (Lemma??)

= O(n
−2

)

whenα ≥ 8γn
βε2 ln n. Again by Lemma??, there are at≤ 2γdn frames, so the lemma

follows from a union bound over them.
Proof: (Of Theorem??) If nodev is discarded, its share is0, so we need only con-

sider nodes in the ring. Such a nodev chooses one ID in each ofm ≤ αcvγcγu +O(1)
frames (Lemma 1).

We first fix the nodes’ choices of the frames in which they place their IDs. Let
X1, . . . , Xm be the fraction of the ID space owned by each of nodev’s IDs. The ran-
domness in theXis is over the intra-frame positions of the nodes’ IDs, which are chosen
independently and uniformly at random. By Lemma 2, we may assume that each frame has
at least one ID. Thus, the interval assigned to theith ID may span at most one frame bound-
ary, soXi depends only on the locations of the IDs in its frame and in the counterclockwise
preceding frame. Thus, the odd-indexedXis are mutually independent, as are the even-
indexedXis. We will bound the share of these two groups in the same way, one at a time.
Consider first the odd-indexedXis.

Break each frame intod bucketsof equal size; we’ll pickd later. A bucket isoccupied
when some node other thanv chooses an ID inside it, and isemptyotherwise. To analyze the
nodev’s share of the ID space, we’ll count the number of empty buckets counterclockwise-
following v’s chosen IDs. Define an infinite sequence of random variablesYj , each of
which will be the indicator variable for the event that a particular bucket is occupied.Y1 will
correspond to the bucket counterclockwise-followingv’s first odd-indexed ID. SupposeYj
corresponds to thekth bucket followingv’s `th ID. Then we have two cases. (1) IfYj = 0,
Yj+1 corresponds to the next bucket following the same ID. (2) Otherwise,Yj+1 corre-
sponds to the first bucket following the next odd-indexed ID, i.e. the(` + 2)th one. If
m/2 < ` + 2 then we simply setYj+1 = 1. Thus, the number of zeros in the sequence
of Yj ’s is the number of buckets entirely owned byv’s m/2 odd-indexed IDs.

With the goal of upper-bounding the number of zeros, we first deal with depen-
dence among theYjs. By Lemma 2 we may assume that each frame has at leastr =
(1 − ε)βsminnα(n) − O(1) IDs for sufficiently largeα. View Y1, Y2, . . . as a
process. IfYj−1 = 1, then we are in Case (2) andYj corresponds to a frame independent
of those ofY1, . . . , Yj−1, so there are at leastr IDs distributed u.a.r. in the frame which
may occupyYj ’s bucket. If we are in Case (1) thenYj ’s bucket is in the same frame as
that ofYj−1, which implies that some of the buckets in that frame are empty, in which case
there are at leastr IDs distributed u.a.r. in asubsetof the frame includingYj ’s bucket. This
discussion implies that, regardless of the history of theYjs, the probability thatYj = 1 is
at least1− (1− 1/d)r . Formally, we define another sequence of variablesZj which are
independent Poisson trials with success probabilityp to be picked below. For any indeces
j1, . . . , jk , we have

Pr[Yj1 = · · · = Yjk
= 1] =

k∏
`=1

Pr[Yj`
= 1|Yj1 = · · · = Yj`−1 = 1]

≥

k∏
`=1

(
1−

(
1−

1

d

)r)
≥

(
1− e

−r/d
)k

= Pr[Zj1 = · · · = Zjk
= 1]

where we have chosen the success probability for theZjs to bep = 1 − e−r/d . This
implies that an upper bound the number of0’s in the independentZj sequence is also an
upper bound the number of0’s in the dependentYk sequence, a fact which we use next.

If we seem/2 ones in the firstx Yjs, then by the definition of the sequence, we
have seen all the zeros, of which there are at mostx − m/2. Thus nodev will own
at mostx − m/2 complete buckets, plus2 · m/2 partial buckets (one at each end of
the m/2 contiguous sequences of complete buckets), for a total of at mostx + m/2
buckets due to itsm/2 odd-numbered IDs. We now show that we see the requiredm/2
succeses w.h.p. whenx = m

2p(1−δ) . Let P be the number of1’s in the firstx Yjs,

and letP ′ be the corresponding value for theZjs. By the above discussion we have

Pr[P < m/2] ≤ Pr[P ′ < m/2], and E[P ′] = xp = m
2(1−δ) , so

Pr[P < m/2] ≤ Pr[P
′

< m/2]

= Pr[P
′

< (1− δ) ·
m

2(1− δ)
]

≤ e
− mδ2

4(1−δ) (Chernoff bound)

≤ O(e
−

γdαδ2

4(1−δ) ) (Lemma 1 part (2))

= O(n
−2

)

whenα ≥ 8(1−δ)
γdδ2 ln n. In this case, counting now both odd- and even-indexed points,

nodev owns at mostm + m
p(1−δ) buckets, each of sizesmin/d. Normalizing byv’s

fair sharecv/n, we have

share(v) ≤
1

cv/n
·
(

msmin

d
+

msmin

dp(1− δ)

)
.

Recall thatd is arbitrary. Taking the limit asd → ∞, we havedp → r =
(1− ε)βsminnα(n)− O(1) so

share(v) ≤
1

cv/n
·

msmin

(1− δ)((1− ε)βsminnα(n)− O(1))

≤
1

cv
·

m

(1− δ)(1− ε)(1− ε′)βα(n)

≤
1

cv
·

α(n)cvγcγu + O(1)

(1− δ)(1− ε)(1− ε′)βα(n)
(Lemma 1 part (1))

≤
(1 + ε′′)(γcγu)2

(1− δ)(1− ε)(1− γcγuγd)

with probability 1 − O(n−2) for any ε′, ε′′ > 0 and sufficiently largen, so by a

union bound, this is true of all nodes w.h.p. Finally, we require thatα is the maximum of

the requirement given above and that of Lemma 2; settingδ = ε for convenience of presen-

tation, we havemax{ 8(1−ε) ln n

γdε2 ,
8γnγcγu ln n

(1−γcγuγd)ε2 } ≤
8γnγcγu ln n

(1−γcγuγd)γdε2 , as

required by the theorem.



Simulation
• The Contestants

– Chord: Basic Virtual Server Selection

– Y0: LC-VSS applied to Chord’s overlay topology

• Static simulator

– Important simplification: Nodes known and average capacity

– These would actually be estimated

– and there would be some “lazy update” to provide hysteresis



Simulation: Maximum share
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• Homogeneous capacities shown here
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Max Share/Degree Tradeoff
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Goal 2: Exploit Heterogeneity

• Even high-capacity nodes have a single set of overlay links

•Make use of unused capacity: pick denser set of links

• In Chord withα = 1: Θ(cv log n) total outlinks

– Θ(log n) links in Θ(cv) finger tables (one per virtual server)

• In our scheme:Θ(cv log n) total outlinks

– ... all in one dense finger table

– More structured topology⇒ reduced route length



Simulation: Effect of heterogeneity
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Simulation: Effect of heterogeneity
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• SGG capacity distribution from real Gnutella hosts

• Asymptoticroute lengths compared to homogeneous case
Chord:≤ 23% shorter Y0: ≥ 55% shorter



Simulation: Congestion
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Conclusion
• Costs

– Some additional overhead, especially when particularly good
balance desired

– Will incur additional load movement when number of nodes or
average capacity changes by a constant factor

– Require estimates ofn and average capacity

– Assumes uniform distribution of load in ID space

• Benefits

– Simple way to achieve good load balance at low cost

– Compatible with any ring-based overlay

– Adds flexibility in neighbor selection to any overlay

– Takes advantage of heterogeneity to reduce route length



Backup slides



Simulation: Degree
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Simulation: Max Share vs. Capacity
Distribution
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