PATHLET ROUTING

Brighten Godfrey
Scott Shenker
Ion Stoica
{pbg,shenker,istoica}@cs.berkeley.edu

UC Berkeley

Hotnets 2008

multipath internet routing

good for everyone!

reliability source observes directly, reacts quickly

path quality source observes directly, knows what it wants

money network providers can sell new service

good for everyone

"The Route Not Taken" [Frost 1920]

Two routes diverged in a network, and I -- I took the one less transited, And that has reduced latency by up to 41%.

why don't we have it?

Even if everyone involved wants multipath, no way to do it in BGP!

All paths blocked except one.

Offer more?
State explosion!

why don't we have it?

AS-level source routing...

...gives network owners no control.

why don't we have it?

path vector (BGP)

great at blocking paths! bad at allowing them.

AS-level source routing

great at allowing paths! bad at blocking them.

Highly constrained routing policies.

goal: flexible many paths

pathlet routing

outline

the protocol

emulating other protocols

local transit (LT) policies

pathlet routing

- 1. vnode: virtual node within an AS
- 2. pathlet: sequence of vnodes
- 3. announce pathlets
- 4. source lists pathlets in packet

example one per AS one per link gossip all known pathlets 128.2.0.0/16 to neighbors = AS level source routing

forwarding plane

- pathlets tagged with Forwarding ID sequence
- packet contains list of FIDs
- forwarding table maps FID to, e.g., outgoing interface

outline

the protocol

emulating other protocols

local transit (LT) policies

emulating BGP

emulating other protocols

MIRO [Xu, Rexford, SIGCOMM'06]

• NIRA [Yang, Clark, Berger, ToN'07]

outline

the protocol

emulating other protocols

local transit (LT) policies

"local transit" policies

Each ingress --> egress pair is either allowed or disallowed.

Subject to this, any path allowed!

LTP a common case?

• capture a network's direct costs

 valley freeness is a LT policy, and the common case in BGP export policies today

valley free routing as an LTP

"customers can route to anyone; anyone can route to customers"

providers

scalability

	BGP	Pathlet routing, class-based LT policies
forwarding table entries	O(kn)	O(d+k)
control plane entries	O(dkn)	O((d+k)n)
control plane messaging	> O(Lkn/d)	O(dn)

n = # ASes

L = mean path len

d = mean # neighbors

k = prefixes per AS

forwarding table entries

current Internet (CAIDA/APNIC):

BGP one per destination 266,073 entries (IP prefix)

pathlet routing, one for each pathlet 2,317 entries, max policies starting at the router 6 entries, mean

conclusion

- pathlet routing: flexible policies --> multipath with many choices, better scalability
- can't emulate everything, e.g. FBR [Zhu, Gritter, Cheriton '03]
- emulate others? path splicing [Motiwala, Elmore, Feamster, Vempala 2008], Routing Deflections [Yang, Wetherall 2006]
- challenge for all multipath protocols: different payment for different paths?

thanks: fonts by tom7