
Constructing VPNs in
Pathlet Routing

Brighten Godfrey
July 1, 2009

Revised Oct 9, 2009

Thanks to Nick Feamster, Nick McKeown, Guru Parulkar, Jennifer Rexford, and
Scott Shenker, whose discussions posed the question of how to support VPNs.

1

VPNs in Pathlet Routing
Suppose we have this AS-level topology
and we want to set up a VPN between S
and T, so that so they can reach each
other, but other nodes (in particular, C)
cannot send to or receive from them.
Unlike the typical case in the Internet
today, this VPN spans multiple providers
(A and B).

Meanwhile, all the nodes in the interior
(A,B,C) should be able to communicate
freely.

We’ll assume nodes along the VPN path
cooperate.

A B

C

S T

2

What we basically want
A B

C

S TWe basically want the vnodes and pathlets
shown at right. S and T have their private
connection not accessible by C even though C
can route to, and through, A and B. As you
can see, it’s easy to construct a virtual private
network, since pathlet routing effectively
routes on a virtual topology.

As usual in pathlet routing, this policy is
enforced strongly in the data plane: there is
no sequence of bits that C can put in a packet
header that would cause it to arrive at S or T.

But we’re glossing over one detail, dealing
with what we call ingress vnodes. For
example, B should be able to send to both of
A’s vnodes, but C should only be able to send
to the black one.

AS

vnode

pathlet

3

Ingress vnodes
Logically, A exposes a set of ingress vnodes
to S and B (namely, the set is both of its
vnodes), but A exposes only the black
vnode to C because C is not permitted
access to the VPN. When B sends A a
packet, it tags the packet with the intended
next-hop vnode. If C sends A a packet
tagged with the red vnode, the packet is
dropped.

At a high level, that’s all there is to it. You
can now stop reading unless you want the
nitty-gritty details.

AS

vnode

pathlet

A B

C

S T

4

The details
The rest of this document is about the
nitty-gritty details.

The issue is that tagging a packet with the
intended vnode is slightly inconvenient. We
felt it was cleaner to define the protocol so
that packets contain only a list of pathlet
identifiers (i.e., forwarding identifiers or
FIDs). These are designed to be compact.
Thus, the protocol spec in the paper says
that a router specifies only a single ingress
vnode for each neighbor.

Fortunately, it turns out that the single-
ingress design is just as powerful as the set-
of-ingress design, so the single-ingress
protocol spec is fully capable of imple-
menting VPNs. We take a look at this
equivalence next.

AS

vnode

pathlet

A B

C

S T

5

single ingress == multiple
It’s easy to transform any multiple-ingress design to a single-ingress-per-
neighbor design. We’ll just show an example. Suppose X wants A to be able
to ingress to both of X’s vnodes, but B should only ingress to one.

X

A

B

X

A

B

ASvnode

pathletingress vnode

ingress from A only

ingress from A or B

ingress fr
om A o

nly

ingress from B only

6

single ingress == multiple
One-hop pathlets into X are transformed into two-hop pathlets. Intuitively,
instead of tagging a packet with its next-hop vnode, we’re pushing another FID
onto the front of the route.

X

A

B

X

A

B

ASvnode

pathletingress vnode

7

VPN with one ingress
A B

S T
Putting it all together, here is a
pathlet routing network which
implements the desired VPN using
only a single ingress vnode for
each neighbor. The ingress vnode
for a particular neighbor is, as you
might expect, the one drawn
closest to that neighbor.

This looks a bit complex, but in
practice we would probably define
the network as it looks in Slide 3
(which is more convenient for the
operator) and then use the pro-
cedure of Slide 6-7 to auto-
matically compile down to this
single-ingress representation
(which is more convenient for the
data plane.)

AS

vnode

pathlet

ingress vnode

C

8

